首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   92篇
  国内免费   3篇
  2023年   8篇
  2022年   7篇
  2021年   14篇
  2020年   17篇
  2019年   20篇
  2018年   11篇
  2017年   20篇
  2016年   18篇
  2015年   48篇
  2014年   41篇
  2013年   54篇
  2012年   72篇
  2011年   77篇
  2010年   46篇
  2009年   32篇
  2008年   41篇
  2007年   55篇
  2006年   45篇
  2005年   43篇
  2004年   45篇
  2003年   44篇
  2002年   31篇
  2001年   9篇
  2000年   21篇
  1999年   18篇
  1998年   16篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1994年   7篇
  1992年   6篇
  1991年   3篇
  1989年   8篇
  1988年   4篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1982年   8篇
  1981年   5篇
  1979年   2篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1973年   6篇
  1972年   4篇
  1969年   2篇
  1967年   3篇
  1966年   2篇
排序方式: 共有987条查询结果,搜索用时 15 毫秒
151.
152.
153.
154.
Desulfovibrio sp. A2 is an anaerobic gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms.  相似文献   
155.
Hydrolytic deamination of cytosine to uracil in DNA is increased in organisms adapted to high temperatures. Hitherto, the uracil base excision repair (BER) pathway has only been described in two archaeons, the crenarchaeon Pyrobaculum aerophilum and the euryarchaeon Archaeoglobus fulgidus, which are hyperthermophiles and use single-nucleotide replacement. In the former the apurinic/apyrimidinic (AP) site intermediate is removed by the sequential action of a 5'-acting AP endonuclease and a 5'-deoxyribose phosphate lyase, whereas in the latter the AP site is primarily removed by a 3'-acting AP lyase, followed by a 3'-phosphodiesterase. We describe here uracil BER by a cell extract of the thermoacidophilic euryarchaeon Thermoplasma acidophilum, which prefers a similar short-patch repair mode as A. fulgidus. Importantly, T. acidophilumcell extract also efficiently executes ATP/ADP-stimulated long-patch BER in the presence of deoxynucleoside triphosphates, with a repair track of ~15 nucleotides. Supplementation of recombinant uracil-DNA glycosylase (rTaUDG; ORF Ta0477) increased the formation of short-patch at the expense of long-patch repair intermediates, and additional supplementation of recombinant DNA ligase (rTalig; Ta1148) greatly enhanced repair product formation. TaUDG seems to recruit AP-incising and -excising functions to prepare for rapid single-nucleotide insertion and ligation, thus excluding slower and energy-costly long-patch BER.  相似文献   
156.
157.
Little is known with respect to bacterial population structures in freshwater environments. Using complementary culture-based, cloning, and high-throughput Illumina sequencing approaches, we investigated microdiverse clusters of bacteria that comprise members with identical or very similar 16S rRNA gene sequences. Two 16S rRNA phylotypes could be recovered by cultivation in low-nutrient-strength liquid media from two lakes of different trophic status. Both phylotypes were found to be physiologically active in situ throughout most of the year, as indicated by the presence of their rRNA sequences in the samples. Analyses of internal transcribed spacer (ITS1) sequences revealed the presence of seven different sequence types among cultured representatives and the cloned rrn fragments. Illumina sequencing yielded 8,576 ITS1 sequences that encompassed 15 major and numerous rare sequence types. The major ITS1 types exhibited distinct temporal patterns, suggesting that the corresponding Sphingomonadaceae lineages occupy different ecological niches. However, since strains of the same ITS1 type showed highly variable substrate utilization patterns, the potential mechanism of niche separation in Sphingomonadaceae cannot be explained by substrate utilization alone and may be related to other traits.  相似文献   
158.
Vascular damage caused by Shiga toxin (Stx)-producing Escherichia coli is largely mediated by Stxs, which in particular, injure microvascular endothelial cells in the kidneys and brain. The majority of Stxs preferentially bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer) and, to a lesser extent, to globotetraosylceramide (Gb4Cer). As clustering of receptor GSLs in lipid rafts is a functional requirement for Stxs, we analyzed the distribution of Gb3Cer and Gb4Cer to membrane microdomains of human brain microvascular endothelial cells (HBMECs) and macrovascular EA.hy 926 endothelial cells by means of anti-Gb3Cer and anti-Gb4Cer antibodies. TLC immunostaining coupled with infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry revealed structural details of various lipoforms of Stx receptors and demonstrated their major distribution in detergent-resistant membranes (DRMs) compared with nonDRM fractions of HBMECs and EA.hy 926 cells. A significant preferential partition of different receptor lipoforms carrying C24:0/C24:1 or C16:0 fatty acid and sphingosine to DRMs was not detected in either cell type. Methyl-β-cyclodextrin (MβCD)-mediated cholesterol depletion resulted in only partial destruction of lipid rafts, accompanied by minor loss of GSLs in HBMECs. In contrast, almost entire disintegration of lipid rafts accompanied by roughly complete loss of GSLs was detected in EA.hy 926 cells after removal of cholesterol, indicating more stable microdomains in HBMECs. Our findings provide first evidence for differently stable microdomains in human endothelial cells from different vascular beds and should serve as the basis for further exploring the functional role of lipid raft-associated Stx receptors in different cell types.  相似文献   
159.
Septins form a filamentous collar at the mother-bud neck in budding yeast. In cytokinesis, this collar splits into two rings and the septin complexes undergo a dramatic reorientation. Using fluorescence polarization microscopy, DeMay et al. (2011. J. Cell Biol. doi:10.1083/jcb.201012143) now demonstrate that septin complexes assemble as paired filaments in vivo and reveal new insights into septin organization during cytokinesis.  相似文献   
160.
Fish nodaviruses (betanodaviruses) are small, non-enveloped icosahedral single-stranded positive-sense RNA viruses that can cause viral encephalopathy and retinopathy (VER) in a number of cultured marine teleost species, including Atlantic halibut (Hippoglossus hippoglossus). A recombinant protein vaccine and a DNA vaccine were produced, based on the same capsid-encoding region of the Atlantic halibut nodavirus (AHNV) genome, and tested for protection in juvenile turbot (Scophthalmus maximus). Vaccine efficacy was demonstrated in the fish vaccinated with recombinant capsid protein but not in the DNA-vaccinated fish, despite the fact that in vivo expression of the DNA vaccine-encoded antigen was confirmed by RNA in situ hybridisation and immunohistochemistry. Combined DNA and recombinant vaccine administration did not improve the effect of the latter. Surprisingly, fish vaccinated with 50 microg recombinant protein demonstrated a threefold lower survival rate than the two groups that received 10 microg recombinant protein. Neither the recombinant protein vaccine nor the DNA vaccine induced anti-viral antibodies 9 weeks after immunisation, while antibodies reactive with the recombinant protein were detectable mainly in fish vaccinated with 50 microg recombinant protein. The study also demonstrates evidence of viral replication inside the myocytes of intramuscularly challenged fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号