首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   822篇
  免费   53篇
  国内免费   1篇
  2021年   6篇
  2019年   8篇
  2018年   13篇
  2016年   15篇
  2015年   27篇
  2014年   23篇
  2013年   37篇
  2012年   44篇
  2011年   45篇
  2010年   36篇
  2009年   28篇
  2008年   54篇
  2007年   33篇
  2006年   46篇
  2005年   53篇
  2004年   38篇
  2003年   27篇
  2002年   33篇
  2001年   7篇
  1999年   11篇
  1998年   18篇
  1997年   9篇
  1996年   11篇
  1995年   10篇
  1994年   9篇
  1993年   11篇
  1992年   12篇
  1991年   10篇
  1990年   6篇
  1989年   15篇
  1988年   8篇
  1987年   6篇
  1985年   8篇
  1982年   7篇
  1981年   9篇
  1980年   5篇
  1979年   7篇
  1978年   8篇
  1977年   9篇
  1976年   9篇
  1975年   4篇
  1974年   8篇
  1973年   5篇
  1971年   4篇
  1970年   6篇
  1969年   9篇
  1967年   4篇
  1966年   4篇
  1963年   4篇
  1961年   5篇
排序方式: 共有876条查询结果,搜索用时 15 毫秒
41.
The distribution of UDP-galactose: ceramide galactosyltransferase (CGalT) was studied in subcellular fractions of rat forebrain during development using zonal centrifugation on linear gradients. Specialized subfractions: SN 1, a microsomal fraction, SN 4, a myelin-related fraction, and purified myelin were also used for this study. For comparison, two microsomal lipid synthesizing enzymes, a myelin-specific enzyme, 2,3-cyclic nucleotide 3-phosphodiesterase and myelin proteins were measured in the same subfractions. UDP-glucose: ceramide glucosyltransferase and cerebroside sulfotransferase were confined to microsomes. CGalT was ferase and cerebroside sulfotransferase were confined to microsomes. CGalT was localized in microsomes, but also in myelin and myelin-related fractions. The developmental change in distribution of CGalT in adult animals toward myelin containing fractions could indicate that the replacement of galactosylceramide in compact myelin could be carried out in close proximity to compact myelin (mesaxon, paranodal loops) rather than in the distant oligodendrocyte perikaryon.  相似文献   
42.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   
43.
Summary Intracellular concentrations of phenylalanine, tyrosine, -aminobutyric acid, and seven other aminoacids (glycine, alanine, valine, cystine, methionine, isoleucine, leucine) were measured in lymphocytes of 13 homozygotes and 19 heterozygotes for phenylketonuria and in lymphocytes of 26 normals. Intracellular concentrations for phenylalanine, tyrosine, and -aminobutyric acid were significantly higher in homo- and heterozygotes than in normals (P<0.001; P<0.01). For the other seven aminoacids there were no or only questionable differences. Between homo-and heterozygotes there was no difference in any of the aminoacids. The intracellular phenylalanine: tyrosine ratio was essentially the same in all three groups of individuals. There was no correlation between intracellular phenylalanine above or below 10nmol/106 cells and IQ in heterozygotes. The same is true for phenylalanine: tyrosine ratio greater or smaller than 1. In homozygotes there was no correlation between intracellular phenylalanine and age—to which DQ/IQ is correlated. There was no significant difference in intracellular phenylalanine between homozygotes with blood levels above and below 908 mol/l (15 mg/100 ml) at the time of blood sampling and no correlation between intra- and extracellular phenylalanine concentrations.Among the 26 normals there were only two with intracellular phenylalanine above 10 nmol/106 cells, both showing phenylalanine loading test curves suggestive of heterozygosity.The results are discussed and important functions of the cell wall are proposed. The formation of an abnormal unknown intracellular metabolite being the real noxious agent could explain the incomparably different degrees of brain dysfunction in individuals with equal though elevated intracellular phenylalanine concentrations, i.e., homozygotes and heterozygotes for PKU.  相似文献   
44.
The uptake of [3H]actinomycin D ([3H]AD) by ConA-stimulated lymphocytes was followed during 96 h of incubation and correlated with the level of nuclear proteins in the nucleus, DNA synthesis and the degree of AD-induced inhibition of RNA and DNA synthesis. During the first 48 h there is a parallel increase of drug binding to cells and a rising level of non-histone proteins (NHP) in the nucleus. During the next 48 h, DNA synthesis occurs, drug uptake decreases and the nuclear level of NHP continues to rise. The level of histones remains constant during 96 h. The variations in cellular [3H]AD uptake during 96 h are not due to changes in cell membrane permeability, since similar variations in drug binding are observed in isolated cell nuclei. NHP, obtained as 0.25 M NaCl extracts of cell nuclei, increase binding of [3H]AD to nuclei isolated from non-stimulated lymphocytes, while histones have no such effect. NHP extracted with phenol, after washing the nuclei with salt and acid solutions, or extracted with 0.25 M NaCl from non-stimulated and stimulated lymphocytes and Chang liver cells are equally active to bind [3H]AD to nuclei of non-stimulated lymphocytes. NHP from Chang cells, purified by DNA-cellulose chromatography using calf thymus DNA, stimulated [3H]AD binding to lymphocyte nuclei, indicating that the drug-binding activity is due to proteins binding to DNA. NHP increase binding of [3H]AD to pure DNA in the absence of histones. The degree of [3H]AD binding to ConA-stimulated lymphocytes during 96 h correlated with the degree of inhibition of RNA and DNA synthesis by AD.  相似文献   
45.
Summary Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits with the tissue of origin. Microvasculature was localized in situ by immunohistochemitry in breast samples. From this tissue, collagen-rich stroma and adipose tissue were dissected mechanically and further disaggregated to release microvessel organoids BRENCs were cultured from these organoids in endothelial specific medium and characterized by staining for endothelial markers. Microvessels were a prominent feature of intralobular tissue as evidenced by immunostaining against endothelial specific markers such as CD31, VE-cadherin, and von Willebrand factor (VWF). Double staining against VE-cadherin and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) showed that blood and lymphatic vessels could be distinguished. An antibody against CD31 was used to refine protocols for isolation of microvasculature from reduction mammoplasties. BRENCs retained critical traits even at high passage, including uptake of low-density lipoprotein, and had E-selectin induced upon treatment with tumor necrosis factor-α. The first signs of senescence in passage 14 were accompained by gain of trisomy 11. At passage 18 cells showed chromosomal aberrations and growth arrest as revealed by β-galactosidase staining. We demonstrate here that breast microvasculature may serve as a large-scale source for expansion of BRENCs with molecular and functional traits preserved. These cells will form the basis for studies on the role of endothelial cells in breast morphogenesis.  相似文献   
46.
Exploring molecular and mechanical gradients in structural bioscaffolds   总被引:1,自引:0,他引:1  
Most organisms consist of a functionally adaptive assemblage of hard and soft tissues. Despite the obvious advantages of reinforcing soft protoplasm with a hard scaffold, such composites can lead to tremendous mechanical stresses where the two meet. Although little is known about how nature relieves these stresses, it is generally agreed that fundamental insights about molecular adaptation at hard/soft interfaces could profoundly influence how we think about biomaterials. Based on two noncellular tissues, mussel byssus and polychaete jaws, recent studies suggest that one natural strategy to minimize interfacial stresses between adjoining stiff and soft tissue appears to be the creation of a "fuzzy" boundary, which avoids abrupt changes in mechanical properties. Instead there is a gradual mechanical change that accompanies the transcendence from stiff to soft and vice versa. In byssal threads, the biochemical medium for achieving such a gradual mechanical change involves the elegant use of collagen-based self-assembling block copolymers. There are three distinct diblock copolymer types in which one block is always collagenous, whereas the other can be either elastin-like (soft), amorphous polyglycine (intermediate), or silk-like (stiff). Gradients of these are made by an incrementally titrated expression of the three proteins in secretory cells the titration phenotype of which is linked to their location. Thus, reflecting exactly the composition of each thread, the distal cells secrete primarily the silk- and polyglycine-collagen diblocks, whereas the proximal cells secrete the elastin- and polyglycine-collagen diblocks. Those cells in between exhibit gradations of collagens with silk or elastin blocks. Spontaneous self-assembly appears to be by pH triggered metal binding by histidine (HIS)-rich sequences at both the amino and carboxy termini of the diblocks. In the polychaete jaws, HIS-rich sequences are expanded into a major block domain. Histidine predominates at over 20 mol % near the distal tip and diminishes to about 5 mol % near the proximal base. The abundance of histidine is directly correlated to transition metal content (Zn or Cu) as well as hardness determined by nanoindentation. EXAFS analyses of the jaws indicate that transition metals such as Zn are directly bound to histidine ligands and may serve as cross-linkers.  相似文献   
47.
Fibroblast activation protein (FAP) and dipeptidyl peptidase-4 (DPP-4) are highly homologous serine proteases of the prolyl peptidase family and therapeutic targets for cancer and diabetes, respectively. Both proteases display dipeptidyl peptidase activity, but FAP alone has endopeptidase activity. FAP Ala657, which corresponds to DPP-4 Asp663, is important for endopeptidase activity; however, its specific role remains unclear, and it is unknown whether conserved DPP-4 substrate binding residues support FAP endopeptidase activity. Using site-directed mutagenesis and kinetic analyses, we show here that Ala657 and five conserved active site residues (Arg123, Glu203, Glu204, Tyr656, and Asn704) promote FAP endopeptidase activity via distinct mechanisms of transition state stabilization (TSS). The conserved residues provide marked TSS energy for both endopeptidase and dipeptidyl peptidase substrates, and structural modeling supports their function in binding both substrates. Ala657 also stabilizes endopeptidase substrate binding and additionally dictates FAP reactivity with transition state inhibitors, allowing tight interaction with tetrahedral intermediate analogues but not acyl-enzyme analogues. Conversely, DPP-4 Asp663 stabilizes dipeptidyl peptidase substrate binding and permits tight interaction with both transition state analogues. Structural modeling suggests that FAP Ala657 and DPP-4 Asp663 confer their contrasting effects on TSS by modulating the conformation of conserved residues FAP Glu204 and DPP-4 Glu206. FAP therefore requires the combined function of Ala657 and the conserved residues for endopeptidase activity.  相似文献   
48.
Strains from Paecilomyces fumosoroseus, Lecanicillium muscarium, Metarhizium anisopliae and Beauveria bassiana were examined in standardized Biotest to control the horse-chestnut leaf miner (Cameraria ohridella) in her pupal stage in winter. The fungi were pathogenic against the hibernating pupae of Cameraria ohridella at dose of 1.9 x 10(7) conidia/ml. They were aggressive, led to infection, death and mouldiness of naked pupae. Even at low temperature of 5 degrees C and 12 degrees C. L. muscarium strain V24 showed the highest pathogenicity after 4 weeks against this host, close followed by P. fumosoroseus strain P6. M. anisopliae strain 72 and 8. bassiana strain B412 were also pathogen but after a long-time period. Experiments gave information for general susceptibility of naked pupae of C. ohridella under low temperatures against entomopathogenic fungi. In further examinations it has to be tested, whether fungi can infected, when the pupae stay in their natural surroundings, the pupal cell in the leaf.  相似文献   
49.
Pseudomonas aeruginosa strains causing chronic pulmonary infections in cystic fibrosis patients produce high levels of alginate, an exopolysaccharide that confers a mucoid phenotype. Alginate is a linear polymer of d-mannuronate (M) and variable amounts of its C-5-epimer, l-guluronate (G). AlgG is a periplasmic C-5-epimerase that converts poly d-mannuronate to the mixed M+G sequence of alginate. To understand better the role and mechanism of AlgG activity, a mutant was constructed in the mucoid strain FRD1 with a defined non-polar deletion of algG. Instead of producing poly mannuronate, the algG deletion mutant secreted dialysable uronic acids, as does a mutant lacking the periplasmic protein AlgK. High levels of unsaturated ends and the nuclear magnetic resonance spectroscopy pattern revealed that the small, secreted uronic acids were the products of extensive polymer digestion by AlgL, a periplasmic alginate lyase co-expressed with AlgG and AlgK. Thus, AlgG is bifunctional with (i) epimerase activity and (ii) a role in protecting alginate from degradation by AlgL during transport through the periplasm. AlgK appears to share the second role. AlgG and AlgK may be part of a periplasmic protein complex, or scaffold, that guides alginate polymers to the outer membrane secretin (AlgE). To characterize the epimerase activity of AlgG further, the algG4 allele of poly mannuronate-producing FRD462 was shown to encode a protein lacking only the epimerase function. The sequence of algG4 has a Ser-272 to Asn substitution in a serine-threonine-rich and conserved region of AlgG, which revealed a critical residue for C-5-epimerase activity.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号