首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1598篇
  免费   142篇
  1740篇
  2023年   9篇
  2022年   9篇
  2021年   29篇
  2020年   13篇
  2019年   14篇
  2018年   21篇
  2017年   20篇
  2016年   37篇
  2015年   66篇
  2014年   77篇
  2013年   104篇
  2012年   106篇
  2011年   95篇
  2010年   58篇
  2009年   57篇
  2008年   78篇
  2007年   84篇
  2006年   85篇
  2005年   73篇
  2004年   88篇
  2003年   66篇
  2002年   73篇
  2001年   39篇
  2000年   40篇
  1999年   22篇
  1998年   29篇
  1997年   20篇
  1996年   14篇
  1995年   18篇
  1994年   12篇
  1993年   11篇
  1992年   18篇
  1991年   21篇
  1990年   14篇
  1989年   12篇
  1988年   19篇
  1987年   12篇
  1986年   9篇
  1985年   9篇
  1984年   13篇
  1982年   9篇
  1981年   10篇
  1979年   12篇
  1978年   6篇
  1977年   7篇
  1975年   6篇
  1974年   9篇
  1973年   6篇
  1970年   8篇
  1966年   10篇
排序方式: 共有1740条查询结果,搜索用时 14 毫秒
51.
52.
The evolution of the ribonuclease A (RNase A) vertebrate-specific enzyme family is interesting in that specific gene lineages appear to be responding to unique selective pressures in wildly diverse manners to generate proteins that are capable of reducing the infectivity of viruses, killing systemic pathogens, and inducing the growth of blood vessels all while maintaining the signature motifs of a ribonuclease. In this paper, we present the DNA sequence and gene structure of Mus musculus RNase 6 and examine the expression pattern and enzymatic activity of the recombinant protein. M. musculus RNase 6 has a limited expression pattern compared to human RNase 6 and is an efficient ribonuclease, with a catalytic efficiency 17-fold higher than that of human protein. Evo- lutionary analysis reveals that RNase 6 was subject to unusual evolutionary forces (dN/dS=1.2) in an ancestral rodent lineage before the separation of Mus and Rattus. However, more recent evolution of rodent RNase 6 has been relatively conserved, with an average dN/dS of 0.66. These data suggest that the ancestral rodent RNase 6 was subject to accelerated evolution, resulting in the conserved modern gene, which most likely plays an important role in mouse physiology.Reviewing Editor: Dr. Lauren Ancel MeyersThe GenBank accession numbers for the new genes presented here are as follows: Mus musculus, AY545655; Rattus norvegicus, AY545654; Mus spicilegus, AY545653; Mus caroli, AY545651; and Mus pahari, AY545652.  相似文献   
53.
54.
N-acylphosphatidylethanolamine (NAPE) is a minor phospholipid resulting from the transfer of an acyl chain from an acyl donor to the primary amine of the ethanolamine moiety of phosphatidylethanolamine (PE). Occurring in plant and animal kingdoms as well as in prokaryotic cells, it is synthesized in higher amounts in membranes during cellular stresses and tissue damage, and it is widely thought to be the precursor of the lipid mediator, N-acylethanolamine (NAE), which modulates the endocannabinoid signaling pathway and therefore regulates various physiological processes. However, recent studies have shown that NAPE is also a bioactive molecule that is involved in several physiological functions. The present paper reviews the occurrence of NAPE in animals and plants and focuses on the various properties of NAPE observed in vitro and in vivo. The different metabolic pathways promoting the synthesis and degradation of NAPE are also discussed and the differences between animals and plants are underlined.  相似文献   
55.
Helene Knævelsrud 《FEBS letters》2010,584(12):2635-31696
Ubiquitinated protein aggregates are hallmarks of a range of human diseases, including neurodegenerative, liver and muscle disorders. These protein aggregates are typically positive for the autophagy receptor p62. Whereas the ubiquitin-proteasome system (UPS) degrades shortlived and misfolded ubiquitinated proteins that are small enough to enter the narrow pore of the barrel-shaped proteasome, the lysosomal pathway of autophagy can degrade larger structures including entire organelles or protein aggregates. This degradation requires autophagy receptors that link the cargo with the molecular machinery of autophagy and is enhanced by certain posttranslational modifications of the cargo. In this review we focus on how autophagy clears aggregate-prone proteins and the relevance of this process to protein aggregate associated diseases.  相似文献   
56.
Many hundreds of research papers over the last ten years have established the significance of PTEN's lipid phosphatase activity in mediating many of its effects on specific cellular processes in many different cell types, including cell growth, proliferation, survival, and migration ([Backman et al., 2002], [Iijima et al., 2002], [Leslie and Downes, 2002] and [Salmena et al., 2008]). In some cases, detailed signalling mechanisms have been identified by which these PtdInsP3-dependent effects are manifest ([Kolsch et al., 2008], [Manning and Cantley, 2007] and [Tee and Blenis, 2005]). Further, in some settings, in vivo data from, for example genetic deletion of PTEN, relates closely with independent manipulation of the PI3K/Akt signalling pathway ([Bayascas et al., 2005], [Chen et al., 2006], [Crackower et al., 2002] and [Ma et al., 2005]). Together these studies indicate that the dominant effects of PTEN function are mediated through its regulation of PtdInsP3-dependent signalling, but that its protein phosphatase activity also contributes in some settings. These conclusions are of great importance given the intense efforts underway to develop PI3K (EC 2.7.1.153) inhibitors as cancer therapeutics. The experiments reviewed here have firmly established that the protein phosphatase activity of PTEN plays a role in the regulation of cellular processes including migration. On the other hand, it has not been established beyond doubt that PTEN acts on substrates other than itself; no such substrates have been confidently identified and effector mechanisms for PTEN's protein phosphatase activity are currently unclear. The goal for future research must be firstly to understand the signalling mechanisms by which PTEN protein phosphatase activity acts: whether this is through identifying substrates, or working out how autodephosphorylation mediates its effects. Secondly, and critically, the significance of PTEN's protein phosphatase activity must be established in vivo. This can be achieved through relating the phenotypes intervening with both PTEN and with protein phosphatase effector pathways when they are identified, and through the generation of mouse models expressing substrate selective PTEN mutants. We should then be able to answer the important question of whether PTEN's protein phosphatase activity contributes to tumour suppression.  相似文献   
57.
Atherosclerosis-associated diseases are the main cause of mortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions that may become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-threatening thrombotic events associated with high-risk vulnerable plaques. Hyperlipidemic mouse models have been extensively used in studying the mechanisms controlling initiation and progression of atherosclerosis. However, the understanding of mechanisms leading to atherosclerotic plaque destabilization has been hampered by the lack of proper animal models mimicking this process. Although various mouse models generate atherosclerotic plaques with histological features of human advanced lesions, a consensus model to study atherosclerotic plaque destabilization is still lacking. Hence, we studied the degree and features of plaque vulnerability in different mouse models of atherosclerotic plaque destabilization and find that the model based on the placement of a shear stress modifier in combination with hypercholesterolemia represent with high incidence the most human like lesions compared to the other models.  相似文献   
58.
A conceptual framework for the spatial analysis of landscape genetic data   总被引:1,自引:0,他引:1  
Understanding how landscape heterogeneity constrains gene flow and the spread of adaptive genetic variation is important for biological conservation given current global change. However, the integration of population genetics, landscape ecology and spatial statistics remains an interdisciplinary challenge at the levels of concepts and methods. We present a conceptual framework to relate the spatial distribution of genetic variation to the processes of gene flow and adaptation as regulated by spatial heterogeneity of the environment, while explicitly considering the spatial and temporal dynamics of landscapes, organisms and their genes. When selecting the appropriate analytical methods, it is necessary to consider the effects of multiple processes and the nature of population genetic data. Our framework relates key landscape genetics questions to four levels of analysis: (i) node-based methods, which model the spatial distribution of alleles at sampling locations (nodes) from local site characteristics; these methods are suitable for modeling adaptive genetic variation while accounting for the presence of spatial autocorrelation. (ii) Link-based methods, which model the probability of gene flow between two patches (link) and relate neutral molecular marker data to landscape heterogeneity; these methods are suitable for modeling neutral genetic variation but are subject to inferential problems, which may be alleviated by reducing links based on a network model of the population. (iii) Neighborhood-based methods, which model the connectivity of a focal patch with all other patches in its local neighborhood; these methods provide a link to metapopulation theory and landscape connectivity modeling and may allow the integration of node- and link-based information, but applications in landscape genetics are still limited. (iv) Boundary-based methods, which delineate genetically homogeneous populations and infer the location of genetic boundaries; these methods are suitable for testing for barrier effects of landscape features in a hypothesis-testing framework. We conclude that the power to detect the effect of landscape heterogeneity on the spatial distribution of genetic variation can be increased by explicit consideration of underlying assumptions and choice of an appropriate analytical approach depending on the research question.  相似文献   
59.
Prolylcarboxypeptidase (PRCP) is a serine protease that catalyzes the cleavage of C‐terminal amino acids linked to proline in peptides. It is ubiquitously expressed and is involved in regulating blood pressure, proliferation, inflammation, angiogenesis, and weight maintenance. To identify the candidate proximal target engagement markers for PRCP inhibition in the central nervous system, we profiled the peptidome of human cerebrospinal fluid to look for PRCP substrates using a MS‐based in vitro substrate profiling assay. These experiments identified a single peptide, with the sequence YPRPIHPA, as a novel substrate for PRCP in human cerebrospinal fluid. The peptide YPRPIHPA is from the extracellular portion of human endothelin B receptor‐like protein 2.  相似文献   
60.
The intestinal mucoprotein synthesis rate was measured in vivo for the first time. For this, a rapid, reproducible, and convenient method to purify mucoproteins from large numbers of intestinal samples at the same time was developed. The method takes advantage of both the high mucin resistance to protease activities due to their extensive glycosylations and the high mucin molecular size. Intestinal homogenates were partially digested with Flavourzyme. Nonprotected proteins partially degraded were easily separated from mucoproteins by small gel filtration chromatography using Sepharose CL-4B. Electrophoretically pure mucins were obtained. Their amino acid composition was typical of purified intestinal epithelial mucins. The mucoprotein synthesis rate was determined in vivo in rats using the flooding dose method with the stable isotope L-[1-13C]valine. Free L-[1-13C]valine enrichments in the intracellular pool were determined by GC-MS. L-[1-13C]valine enrichments into purified mucoproteins or intestinal mucosal proteins were measured by gas chromatography-combustion-isotope ratio mass spectrometry. In rats, we found that the gut mucosa protein synthesis rate (%/day) decreased regularly from duodenum (122%/day) to colon (43%/day). In contrast, mucoprotein fractional synthesis rates were in the same range along the digestive tract, between 112%/day (colon) and 138%/day (ileum).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号