首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4061篇
  免费   261篇
  国内免费   2篇
  4324篇
  2023年   20篇
  2022年   53篇
  2021年   99篇
  2020年   59篇
  2019年   71篇
  2018年   101篇
  2017年   93篇
  2016年   133篇
  2015年   217篇
  2014年   197篇
  2013年   283篇
  2012年   340篇
  2011年   362篇
  2010年   218篇
  2009年   180篇
  2008年   249篇
  2007年   243篇
  2006年   207篇
  2005年   205篇
  2004年   173篇
  2003年   170篇
  2002年   146篇
  2001年   38篇
  2000年   32篇
  1999年   24篇
  1998年   34篇
  1997年   31篇
  1996年   23篇
  1995年   25篇
  1994年   19篇
  1993年   30篇
  1992年   16篇
  1991年   9篇
  1990年   16篇
  1989年   14篇
  1988年   8篇
  1987年   11篇
  1986年   11篇
  1985年   12篇
  1984年   16篇
  1983年   11篇
  1982年   17篇
  1981年   6篇
  1980年   12篇
  1979年   9篇
  1977年   7篇
  1976年   6篇
  1975年   6篇
  1974年   16篇
  1966年   5篇
排序方式: 共有4324条查询结果,搜索用时 15 毫秒
441.
Heredity of cholesterol absorption and synthesis was studied in siblings of hypercholesterolemic probands with low and high serum cholestanol to cholesterol ratio (assumed to indicate low and high absorption of cholesterol, respectively). Cholesterol synthesis was assayed with sterol balance technique and measuring serum cholesterol precursor to cholesterol ratios (synthesis markers of cholesterol), and cholesterol absorption with measuring dietary cholesterol absorption percentage and serum plant sterol and cholestanol to cholesterol ratios (absorption markers of cholesterol). In the siblings of the low absorption families, cholesterol absorption percentage and ratios of absorption markers were significantly lower, and cholesterol and bile acid synthesis, cholesterol turnover, fecal steroids and ratios of synthesis markers significantly higher than in the siblings of the high absorption families. The ratios of absorption and synthesis markers were inversely interrelated, and they were correlated with cholesterol absorption and synthesis in the siblings. In addition, low absorption was associated with high body mass index, low HDL cholesterol, and serum sex hormone binding globulin levels, suggesting that low absorption was associated with metabolic syndrome. Intrafamily correlations were significant for serum synthesis markers, cholestanol, triglycerides, and blood glucose level. In conclusion, cholesterol absorption efficiency and synthesis are partly inherited phenomena, and they can be predicted by the ratios of non-cholesterol sterols to cholesterol in serum.  相似文献   
442.
Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α‐amyrin, 1‐dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p‐coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1‐dehydrodiosgenone, tricin, and p‐coumaric acid are also reported, and p‐coumaric acid and 1‐dehydrodiosgenone were active against B. pilosa.  相似文献   
443.
The susceptibility of starch-based biomaterials to enzymatic degradation by amylolytic enzymes (glucoamylase and alpha-amylase) was investigated by means of incubating the materials with a buffer solution, containing enzymes at different concentrations and combinations, at 37 degrees C for 6 weeks. Two polymeric blends of corn starch with poly(ethylene-vinyl alcohol) copolymer and poly(epsilon-caprolactone), designated by SEVA-C and SPCL, respectively, were studied. The material degradation was characterized by gravimetry measurements, tensile mechanical testing, scanning electron microscopy (SEM), and Fourrier transform infrared-attenuated total reflectance (FTIR-ATR). The degradation liquors were analyzed for determination of reducing sugars, as a result of enzyme activity, and high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was used to identify the degradation products. All of the analysis performed showed that starch polymeric blends are susceptible to enzymatic degradation, as detected by increased weight loss and reducing sugars in solution. alpha-Amylase caused significant changes on the overall mechanical properties of the materials, with a decrease of about 65% and 58% being observed in the moduli for SEVA-C and SPCL, respectively, when compared with the control (samples incubated in buffer only). SEM analysis detected the presence of fractures and pores at the material's surface as a result of starch degradation by amylolytic enzymes. FTIR spectra confirmed a decrease on the band corresponding to glycosidic linkage (-C-O-C-) of starch after incubation of the materials with alpha-amylase. In contrast, the incubation of the polymers in buffer only, did not cause significant changes on the material's properties and morphology. Comparing the two materials, SEVA-C exhibited a higher degradability, which is related to the physicochemical structure of the materials and also to the fact that the starch concentration is higher in SEVA-C. The identification of the degradation products by HPAEC-PAD revealed that glucose was the major product of the enzymatic degradation of starch-based polymers. alpha-Amylase, as expected, is the key enzyme involved in the starch degradation, contributing to major changes on the physicochemical properties of the materials. Nevertheless, it was also found that starch-based polymers can also be degraded by other amylolytic enzymes but in a smaller extent.  相似文献   
444.
In glucose-grown cells of Saccharomyces cerevisiae IGC 4072, acetic acid enters only by simple diffusion of the undissociated acid. In these cells, ethanol and other alkanols enhanced the passive influx of labelled acetic acid. The influx of the acid followed first-order kinetics with a rate constant that increased exponentially with the alcohol concentration, and an exponential enhancement constant for each alkanol was estimated. The intracellular concentration of labelled acetic acid was also enhanced by alkanols, and the effect increased exponentially with alcohol concentration. Acetic acid is transported across the plasma membrane of acetic acid-, lactic acid-, and ethanol-grown cells by acetate-proton symports. We found that in these cells ethanol and butanol inhibited the transport of labelled acetic acid in a noncompetitive way; the maximum transport velocity decreased with alcohol concentration, while the affinity of the system for acetate was not significantly affected by the alcohol. Semilog plots of Vmax versus alcohol concentration yielded straight lines with negative slopes from which estimates of the inhibition constant for each alkanol could be obtained. The intracellular concentration of labelled acid was significantly reduced in the presence of ethanol or butanol, and the effect increased with the alcohol concentration. We postulate that the absence of an operational carrier for acetate in glucose-grown cells of S. cerevisiae, combined with the relatively high permeability of the plasma membrane for the undissociated acid and the inability of the organism to metabolize acetic acid, could be one of the reasons why this species exhibits low tolerance to acidic environments containing ethanol.  相似文献   
445.
The efficiencies of sinapic acid and its derivatives syringic acid, syringaldehyde, three sinapoyl esters (ethyl, propyl, butyl sinapates), 4-vinylsyringol and sinapine were investigated for prevention of lipid peroxidation in correlation with their interactions with model lipid membrane systems. Significant antioxidant activities of propyl and butyl sinapates were seen by fluorimetric assay in phosphatidylcholine liposomes as model membrane using C11-BODIPY581/591 lipophilic fluorescent probe. The sinapic acid esters also had the highest impact on membrane structural properties, as observed by differential scanning calorimetry and fluorescence polarisation measurements. The greatest protection of phospholipids from peroxidation by these esters correlated well with their polarity and insertion into the lipid bilayer.  相似文献   
446.
447.
The present study was designed (i) to assess the changes in the activity of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and cytochrome P450 aromatase (P450arom) in the ovaries of hens which are subjected to a pause in egg laying by fasting, and (ii) relate these changes with progesterone (P(4)) and estradiol (E(2)) production in the ovary. Hy-Line Brown laying hens (n=90) were fasted for 5 days with water deprivation only on day 3 and subsequently fed every second day up to day 13 and then ad libitum. Birds were euthanized (n=18) on day 0, 3, 6, 9 and 16 of the experiment. The activities of 3beta-HSD and P450arom were evaluated in stroma with cortical follicles (<1mm) and in the wall of white non-hierarchical (1-8 mm) and yellow hierarchical follicles (>8 mm) by histochemical and immunohistochemical method, respectively. Ovarian P(4) and E(2) were measured radioimmunologically. Hens stopped egg laying on day 4 of the experiment and pause in egg laying lasted up to day 12. The hens then began to gradually resume egg laying and on day 16 all hens laid eggs. It was found that during the pause in egg laying: (i) the activity of 3beta-HSD in stroma and normal white follicles was slightly decreased while P450arom activity was significantly increased; (ii) in yellow hierarchical follicles which became atretic and regressed, activity of both enzymes were markedly decreased; (iii) ovarian P(4) production dramatically decreased, whereas ovarian E(2) production after an initial decrease significantly increased. In white atretic follicles the activity of 3beta-HSD and P450arom was very weak during the whole experiment. In conclusion, the present results indicate that during a pause in egg laying white follicles become resistant to atresia.  相似文献   
448.
The pathogenesis of aortic valve stenosis (AS) is characterized by the accumulation of LDL-derived cholesterol in the diseased valves. Since LDL particles also contain plant sterols, we investigated whether plant sterols accumulate in aortic valve lesions. Serum samples were collected from 82 patients with severe AS and from 12 control subjects. Aortic valves were obtained from a subpopulation of 21 AS patients undergoing valve surgery and from 10 controls. Serum and valvular total cholesterol and noncholesterol sterols were measured by gas-liquid chromatography. Noncholesterol sterols, including both cholesterol precursors and sterols reflecting cholesterol absorption, were detected in serum samples and aortic valves. The higher the ratios to cholesterol of the cholesterol precursors and absorption markers in serum, the higher their ratios in the stenotic aortic valves (r=0.74, P<0.001 for lathosterol and r=0.88, P<0.001 for campesterol). The valvular ratio to cholesterol of lathosterol correlated negatively with the aortic valve area (r= -0.47, P=0.045), suggesting attenuation of cholesterol synthesis with increasing severity of AS. The higher the absorption of cholesterol, the higher the plant sterol contents in stenotic aortic valves. These findings suggest that local accumulation of plant sterols and cholesterol precursors may participate in the pathobiology of aortic valve disease.  相似文献   
449.
Summary The reliability of multi‐item scales has received a lot of attention in the psychometric literature, where a myriad of measures like the Cronbach's α or the Spearman–Brown formula have been proposed. Most of these measures, however, are based on very restrictive models that apply only to unidimensional instruments. In this article, we introduce two measures to quantify the reliability of multi‐item scales based on a more general model. We show that they capture two different aspects of the reliability problem and satisfy a minimum set of intuitive properties. The relevance and complementary value of the measures is studied and earlier approaches are placed in a broader theoretical framework. Finally, we apply them to investigate the reliability of the Positive and Negative Syndrome Scale, a rating scale for the assessment of the severity of schizophrenia.  相似文献   
450.
The PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome) identified as a mutated gene in patients with X-linked hypophosphatemia (XLH), encodes a protein (PHEX) that shows striking homologies to members of the M13 family of zinc metallopeptidases. In the present work the interaction of glycosaminoglycans with PHEX has been investigated by affinity chromatography, circular dichroism, protein intrinsic fluorescence analysis, hydrolysis of FRET substrates flow cytometry and confocal microscopy. PHEX was eluted from a heparin-Sepharose chromatography column at 0.8 M NaCl showing a strong interaction with heparin. Circular dichroism spectra and intrinsic fluorescence analysis showed that PHEX is protected by glycosaminoglycans against thermal denaturation. Heparin, heparan sulfate and chondroitin sulfate inhibited PHEX catalytic activity, however among them, heparin presented the highest inhibitory activity (Ki = 2.5 ± 0.2 nM). Flow cytometry analysis showed that PHEX conjugated to Alexa Fluor 488 binds to the cell surface of CHO-K1, but did not bind to glycosaminoglycans defective cells CHO-745. Endogenous PHEX was detected at the cell surface of CHO-K1 colocalized with heparan sulfate proteoglycans, but was not found at the cell surface of glycosaminoglycans defective cells CHO-745. In permeabilized cells, PHEX was detected in endoplasmic reticulum of both cells. In addition, we observed that PHEX colocalizes with heparan sulfate at the cell surface of osteoblasts. This is the first report that the metallopeptidase PHEX is a heparin binding protein and that the interaction with GAGs modulates its enzymatic activity, protein stability and cellular trafficking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号