首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4359篇
  免费   306篇
  国内免费   2篇
  4667篇
  2023年   23篇
  2022年   56篇
  2021年   105篇
  2020年   64篇
  2019年   82篇
  2018年   110篇
  2017年   104篇
  2016年   141篇
  2015年   237篇
  2014年   209篇
  2013年   300篇
  2012年   366篇
  2011年   377篇
  2010年   233篇
  2009年   190篇
  2008年   265篇
  2007年   249篇
  2006年   216篇
  2005年   216篇
  2004年   184篇
  2003年   194篇
  2002年   158篇
  2001年   47篇
  2000年   41篇
  1999年   35篇
  1998年   36篇
  1997年   33篇
  1996年   25篇
  1995年   28篇
  1994年   20篇
  1993年   30篇
  1992年   18篇
  1991年   11篇
  1990年   19篇
  1989年   20篇
  1988年   9篇
  1987年   15篇
  1986年   14篇
  1985年   14篇
  1984年   20篇
  1983年   12篇
  1982年   18篇
  1981年   8篇
  1980年   15篇
  1979年   13篇
  1977年   7篇
  1976年   6篇
  1975年   6篇
  1974年   16篇
  1973年   6篇
排序方式: 共有4667条查询结果,搜索用时 0 毫秒
51.
alpha-Hemolysin (HlyA) from Escherichia coli is a protein toxin (1024 amino acids) that targets eukaryotic cell membranes, causing loss of the permeability barrier. HlyA consists of two main regions, an N-terminal domain rich in amphipathic helices, and a C-terminal Ca(2+)-binding domain containing a Gly- and Asp-rich nonapeptide repeated in tandem 11-17 times. The latter is called the RTX domain and gives its name to the RTX protein family. It had been commonly assumed that membrane interaction occurred mainly if not exclusively through the amphipathic helix domain. However, we have cloned and expressed the C-terminal region of HlyA, containing the RTX domain plus a few stabilizing sequences, and found that it is a potent surface-active molecule. The isolated domain binds Ca(2+) with about the same affinity (apparent K(0.5) approximately 150 microM) as the parent protein HlyA, and Ca(2+) binding induces in turn a more compact folding with an increased proportion of beta-sheet structure. Both with and without Ca(2+) the C-terminal region of HlyA can interact with lipid monolayers spread at an air-water interface. However, the C-terminal domain by itself is devoid of membrane lytic properties. The present results can be interpreted in the light of our previous studies that involved in receptor binding a peptide in the C-terminal region of HlyA. We had also shown experimentally the distinction between reversible membrane adsorption and irreversible lytic insertion of the toxin. In this context, the present data allow us to propose that both major domains of HlyA are directly involved in membrane-toxin interaction, the nonapeptide repeat, calcium-binding RTX domain being responsible for the early stages of HlyA docking to the target membrane.  相似文献   
52.
53.
The endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, nonneuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced the formation of unbranched, long tubules or dense globular structures composed of heavily branched narrow tubules. In both cases, tubules were nonmotile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region also led to a reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes.  相似文献   
54.
55.
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n = 11), transport (n = 6), membrane structure (n = 5), stress response (n = 2), DNA damage repair (n = 1), and other processes (n = 3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.  相似文献   
56.
57.
Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell''s leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells.  相似文献   
58.
59.
Mobilized peripheral blood (MPB) bone marrow cells possess the potential to differentiate into a variety of mesenchymal tissue types and offer a source of easy access for obtaining stem cells for the development of experimental models with applications in tissue engineering. In the present work, we aimed to isolate by magnetic activated cell sorting CD90+ cells from MPB by means of the administration of Granulocyte-Colony Stimulating Factor and to evaluate cell proliferation capacity, after thawing of the in vitro culture of this population of mesenchymal stem cells (MSCs) in sheep. We obtained a median of 8.2 ± 0.6 million of CD90+ cells from the 20-mL MPB sample. After thawing, at day 15 under in vitro culture, the mean CD90+ cells determined by flow cytometry was 92.92 ± 1.29 % and cell duplication time determined by crystal violet staining was 47.59 h. This study describes for the first time the isolation, characterization, and post-in vitro culture thawing of CD90+ MSCs from mobilized peripheral blood in sheep. This population can be considered as a source of MSCs for experimental models in tissue engineering research.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号