首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7743篇
  免费   895篇
  国内免费   3篇
  2022年   63篇
  2021年   139篇
  2020年   74篇
  2019年   94篇
  2018年   128篇
  2017年   111篇
  2016年   183篇
  2015年   312篇
  2014年   361篇
  2013年   445篇
  2012年   498篇
  2011年   534篇
  2010年   311篇
  2009年   294篇
  2008年   431篇
  2007年   423篇
  2006年   362篇
  2005年   379篇
  2004年   354篇
  2003年   372篇
  2002年   367篇
  2001年   104篇
  2000年   85篇
  1999年   112篇
  1998年   102篇
  1997年   79篇
  1996年   83篇
  1995年   56篇
  1994年   63篇
  1993年   65篇
  1992年   73篇
  1991年   76篇
  1990年   65篇
  1989年   90篇
  1988年   61篇
  1987年   67篇
  1986年   54篇
  1985年   58篇
  1984年   57篇
  1983年   53篇
  1982年   61篇
  1981年   48篇
  1980年   47篇
  1979年   52篇
  1978年   48篇
  1977年   39篇
  1976年   36篇
  1974年   39篇
  1972年   37篇
  1967年   36篇
排序方式: 共有8641条查询结果,搜索用时 250 毫秒
931.
Ge RL  Wood H  Yang HH  Liu YN  Wang XJ  Babb T 《生理学报》2010,62(6):541-546
Weight loss is frequently observed after acute exposure to high altitude. However, the magnitude and rate of weight loss during acute exposure to high altitude has not been clarified in a controlled prospective study. The present study was performed to evaluate weight loss at high altitude. A group of 120 male subjects [aged (32±6) years] who worked on the construction of the Golmud-Lhasa Railway at Kunlun Mountain (altitude of 4 678 m) served as volunteer subjects for this study. Eighty-five workers normally resided at sea level (sea level group) and 35 normally resided at an altitude of 2 200 m (moderate altitude group). Body weight, body mass index (BMI), and waist circumference were measured in all subjects after a 7-day stay at Golmud (altitude of 2 800 m, baseline measurements). Measurements were repeated after 33-day working on Kunlun Mountain. In order to examine the daily rate of weight loss at high altitude, body weight was measured in 20 subjects from the sea level group (sea level subset group) each morning before breakfast for 33 d at Kunlun Mountain. According to guidelines established by the Lake Louise acute mountain sickness (AMS) consensus report, each subject completed an AMS self-report questionnaire two days after arriving at Kunlun Mountain. After 33-day stay at an altitude of 4 678 m, the average weight loss for the sea level group was 10.4% (range 6.5% to 29%), while the average for the moderate altitude group was 2.2% (-2% to 9.1%). The degree of weight loss (Δ weight loss) after a 33-day stay at an altitude of 4 678 m was significantly correlated with baseline body weight in the sea level group (r=0.677, P<0.01), while the correlation was absent in the moderate altitude group (r=0.296, P>0.05). In the sea level subset group, a significant weight loss was observed within 20 d, but the weight remained stable thereafter. AMS-score at high altitude was significantly higher in the sea level group (4.69±2.48) than that in the moderate altitude group (2.97±1.38), and was significantly correlated with baseline body weight. These results indicate that (1) the person with higher body weight during stay at high altitude loses more weight, and this is more pronounced in sea level natives when compared with that in moderate altitude natives; (2) heavier individuals are more likely to develop AMS than leaner individuals during exposure to high-altitude hypoxia.  相似文献   
932.
933.
In NCX proteins CBD1 and CBD2 domains are connected through a short linker (3 or 4 amino acids) forming a regulatory tandem (CBD12). Only three of the six CBD12 Ca2+-binding sites contribute to NCX regulation. Two of them are located on CBD1 (Kd = ∼0.2 μm), and one is on CBD2 (Kd = ∼5 μm). Here we analyze how the intrinsic properties of individual regulatory sites are affected by linker-dependent interactions in CBD12 (AD splice variant). The three sites of CBD12 and CBD1 + CBD2 have comparable Kd values but differ dramatically in their Ca2+ dissociation kinetics. CBD12 exhibits multiphasic kinetics for the dissociation of three Ca2+ ions (kr = 280 s−1, kf = 7 s−1, and ks = 0.4 s−1), whereas the dissociation of two Ca2+ ions from CBD1 (kf = 16 s−1) and one Ca2+ ion from CBD2 (kr = 125 s−1) is monophasic. Insertion of seven alanines into the linker (CBD12–7Ala) abolishes slow dissociation of Ca2+, whereas the kinetic and equilibrium properties of three Ca2+ sites of CBD12–7Ala and CBD1 + CBD2 are similar. Therefore, the linker-dependent interactions in CBD12 decelerate the Ca2+ on/off kinetics at a specific CBD1 site by 50–80-fold, thereby representing Ca2+ “occlusion” at CBD12. Notably, the kinetic and equilibrium properties of the remaining two sites of CBD12 are “linker-independent,” so their intrinsic properties are preserved in CBD12. In conclusion, the dynamic properties of three sites are specifically modified, conserved, diversified, and integrated by the linker in CBD12, thereby generating a wide range dynamic sensor.  相似文献   
934.
935.
936.
Galpha(i)‐coupled receptors comprise a diverse family of receptors that induce transformation by largely unknown mechanisms. We previously found that the Galpha(i)‐coupled dopamine‐D2short (D2S) receptor transforms Balb‐D2S cells via Gαi3. To identify new Gαi effectors, a yeast two‐hybrid screen was done using constitutively active Gαi3‐Q204L as bait, and tumor necrosis factor‐alpha (TNFα)‐induced protein 8 (TNFAIP8, SCC‐S2/NDED/GG2‐1) was identified. In contrast, TNFAIP8‐related TIPE1 and TIPE2 showed a very weak interaction with Gαi3. In yeast mating, in vitro pull‐down, co‐immunoprecipitation and bioluminescence resonance energy transfer (BRET) assays, TNFAIP8 preferentially interacted with activated Gαi proteins, consistent with direct Gαi‐TNFAIP8 coupling. Over‐expression or depletion of TNFAIP8 using antisense constructs in Balb‐D2S cells did not affect D2S‐induced signaling to Gαi‐dependent inhibition of cAMP. In contrast, antisense depletion of TNFAIP8 completely inhibited spontaneous and D2S‐induced foci formation, consistent with a role for TNFAIP8 in Gαi‐dependent transformation. To address possible mechanisms, the effect of D2S signaling via TNFAIP8 on TNFα action was examined. D2S receptor activation inhibited TNFα‐induced cell death in Balb‐D2S cells, but not in cells depleted of TNFAIP8. However, depletion of TNFAIP8 did not prevent D2S‐induced inhibition of TNFα‐mediated caspase activation, suggesting that D2S/TNFAIP8‐induced protection from TNFα‐induced cell death is caspase‐independent. The data suggest that Gαi‐TNFAIP8‐mediated rescue of pre‐oncogenic cells enhances progression to oncogenic transformation, providing a selective target to inhibit cellular transformation. J. Cell. Physiol. 225: 865–874, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
937.
Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions.  相似文献   
938.
Infections with human parvoviruses B19 and recently discovered human bocaviruses (HBoVs) are widespread, while PARV4 infections are transmitted parenterally and prevalent specifically in injecting drug users and hemophiliacs. To investigate the exposure and circulation of parvoviruses related to B19 virus, PARV4, and HBoV in nonhuman primates, plasma samples collected from 73 Cameroonian wild-caught chimpanzees and gorillas and 91 Old World monkey (OWM) species were screened for antibodies to recombinant B19 virus, PARV4, and HBoV VP2 antigens by enzyme-linked immunosorbent assay (ELISA). Moderate to high frequencies of seroreactivity to PARV4 (63% and 18% in chimpanzees and gorillas, respectively), HBoV (73% and 36%), and B19 virus (8% and 27%) were recorded for apes, while OWMs were uniformly negative (for PARV4 and B19 virus) or infrequently reactive (3% for HBoV). For genetic characterization, plasma samples and 54 fecal samples from chimpanzees and gorillas collected from Cameroonian forest floors were screened by PCR with primers conserved within Erythrovirus, Bocavirus, and PARV4 genera. Two plasma samples (chimpanzee and baboon) were positive for PARV4, while four fecal samples were positive for HBoV-like viruses. The chimpanzee PARV4 variant showed 18% and 15% nucleotide sequence divergence in NS and VP1/2, respectively, from human variants (9% and 7% amino acid, respectively), while the baboon variant was substantially more divergent, mirroring host phylogeny. Ape HBoV variants showed complex sequence relationships with human viruses, comprising separate divergent homologues of HBoV1 and the recombinant HBoV3 species in chimpanzees and a novel recombinant species in gorillas. This study provides the first evidence for widespread circulation of parvoviruses in primates and enables future investigations of their epidemiology, host specificity, and (co)evolutionary histories.Autonomous parvoviruses known to infect humans comprise parvovirus B19 (18) and the recently discovered PARV4 (22) and human bocavirus (HBoV) (3). Members of the family Parvoviridae are genetically and biologically diverse and are classified into several genera or groups, showing marked differences in host range, pathology, and tissue/cellular tropisms (18). Human parvovirus B19, a member of the Erythrovirus genus, is transmitted primarily by the respiratory route but causes systemic infections. Erythroid progenitor cells are specifically targeted through expression of globoside P antigen, which acts as the B19 virus receptor for entry (5). In common with infections by most parvoviruses, B19 virus infections are acute; a period of intense viremia is followed by seroconversion for antibody to B19 virus and lifelong immunity from reinfection (29). Despite the clearance of viremia and seroconversion for antibody, lifelong persistence of viral DNA in tissues has been shown to occur (12, 20, 26, 28, 43, 58). Three genotypes of B19 virus have been described, differing in nucleotide sequence by approximately 13 to 14% (7, 21, 41, 53); genotypes 1 and 2 have been found in Europe, the United States, and other Western countries, while genotype 3 is restricted to sub-Saharan Africa and South America (7, 47, 49). B19 virus widely circulates in human populations worldwide; in Western countries, several studies have documented increasing frequencies of B19 virus seropositivity with age, rising to approximately 60 to 70% by adulthood (15, 39, 48, 61).Another human parvovirus, PARV4, shows markedly different epidemiology and transmission routes. It was originally detected in plasma from an individual with an “acute infection syndrome” resembling that of primary human immunodeficiency virus (HIV) infection (22). While this clinical presentation has not been observed again, infection with PARV4 is known to be widespread specifically in individuals with a history of parenteral exposure (injecting drug users [IDUs], hemophiliacs, polytransfused individuals), with a strikingly higher incidence in those infected with HIV-1 (13, 14, 30, 35, 54). These observations suggest that PARV4 is primarily transmitted though parenteral routes in Western countries (54, 56). In common with infection with the better-characterized human parvovirus B19, infection with PARV4 is associated with a period of acute viremia, followed by seroconversion for antibody and long-term persistence of viral DNA sequences in lymphoid and other tissue (33, 37, 52). Circulating variants of PARV4 have been classified into three distinct genotypes exhibiting approximately 8% nucleotide sequence divergence from each other. Genotypes 1 and 2 circulate in Western countries, while genotype 3 has to date been recorded only in sub-Saharan Africa (45, 55).The third human parvovirus, HBoV (3), shows a number of epidemiological and clinical attributes different from those of both B19 virus and PARV4. HBoV was originally found in the respiratory tract of young children and has been the subject of intense investigation as a potential cause of human respiratory disease (reviewed in references 1, 51, and 62). Although it is frequently detected by PCR in the nasopharynx of viremic individuals with primary infections with lower respiratory tract disease, other coinfecting respiratory viruses are frequently detected (19). HBoV additionally shows long-term, low-level carriage in the respiratory tract after primary infection, which further complicates PCR-based etiological studies (2, 38) and warrants the use of other diagnostic strategies, such as serology (30, 32, 59). In contrast to the rather minimal genetic diversity of B19 virus and PARV4 genotypes, bocaviruses infecting humans are now known to comprise three to four major genetic variants (termed types or species 1 to 4) (23, 24). HBoV1 and HBoV2 show 22%, 33%, and 20% amino acid sequence divergence from each other in the encoded viral nonstructural (NS), NP-1, and structural VP1/VP2 proteins, respectively, the latter potentially leading to antigenic diversity and some loss of antigenic cross-reactivity. A third type/species of HBoV is a chimeric form with a nonstructural gene region (NS, NP1) most similar to HBoV1, a recombination breakpoint in the intergenic region between NP1 and VP1, and structural genes related to those of HBoV2 (4, 23). Current data suggest that only HBoV1 is capable of infecting the respiratory tract; most published large-scale screening studies have failed to detect HBoV2 (or HBoV3) in respiratory samples (10, 11, 60), while all three types/species are detectable in fecal samples, indicating the existence of an alternative or additional site of virus replication (23). Despite extensive inquiry, the exact role of HBoV1 in respiratory disease remains unclear, as is the proposed etiological role of HBoV2 (and possibly HBoV3) in gastroenteritis (4, 11, 23, 50). Very recently, a fourth species/type, HBoV4, has been detected in fecal samples; genetically it also shows evidence for past recombination, with NS and NP1 region sequences grouping with HBoV2, while VP1/VP2 is more closely related to HBoV3 (23).We have little understanding of the past epidemiology, evolution, and origins of human parvoviruses. For both B19 virus and PARV4, evidence has been obtained for a temporal succession of genotypes over time (37, 43); in Europe, B19 virus genotype 1 largely replaced type 2 in the 1960 and 1970s (43), while current data indicate that a similar replacement of PARV4 genotypes occurred within the last 20 years (37). The highly restricted sequence diversity of currently circulating variants of PARV4 and B19 virus and of HBoV1 variants supports the hypothesis of a relatively recent emergence and spread of these viruses in human populations (36, 42, 64).The existence and evolution of parvoviruses on a much longer time scale is suggested by the observations that members of the Erythrovirus and Parvovirus genera both contain viruses that are highly host species specific and that the molecular phylogenies of both genera are largely congruent with those of their hosts (34). This has led to the hypothesis of long-term coevolution of parvoviruses with their host over the 90 million years of mammalian evolution and perhaps beyond. Among erythroviruses, simian homologues of B19 virus have been found in cynomolgus monkeys (44) and rhesus and pig-tailed macaques (16) and more genetically distant viruses have been characterized in chipmunks and cows (9, 63). Divergent homologues of PARV4 in pigs and cows have been described (31), while the bovine and canine parvoviruses distantly related to HBoV are the originally described members of the Bocavirus genus. However, the process of virus-host codivergence is known to be punctuated by occasional cross-species transmissions, including the well-documented spread of feline parvovirus to dogs (46). Based on serological evidence, the possible transmission of simian erythroviruses to animal handlers has been proposed (6).To gain further insights into the origins and evolution of human parvoviruses, we have performed large-scale serological and PCR-based screening of nonhuman primates (chimpanzees and gorillas) and of several species of Old World monkeys (OWMs) for evidence of infection with parvoviruses that are antigenically related to the human B19, PARV4, and HBoV viruses. By PCR, we have sought to genetically characterize homologues of the three autonomous human parvoviruses in apes and Old World monkey species and to analyze their evolutionary relationship to human and other mammalian homologues of these viruses.  相似文献   
939.
940.
Realizing the potential clinical and industrial applications of human embryonic stem cells (hESCs) is limited by the need for costly, labile, or undefined growth substrates. Here we demonstrate that trypsin passaging of the hESC lines, HUES7 and NOTT1, on oxygen plasma etched tissue culture polystyrene (PE‐TCPS) in conditioned medium is compatible with pluripotency. This synthetic culture surface is stable at room temperature for at least a year and is readily prepared by placing polystyrene substrates in a radio frequency oxygen plasma generator for 5 min. Modification of the polystyrene surface chemistry by plasma etching was confirmed by X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), which identified elemental and molecular changes as a result of the treatment. Pluripotency of hESCs cultured on PE‐TCPS was gauged by consistent proliferation during serial passage, expression of stem cell markers (OCT4, TRA1‐60, and SSEA‐4), stable karyotype and multi‐germlayer differentiation in vitro, including to pharmacologically responsive cardiomyocytes. Generation of cost‐effective, easy‐to‐handle synthetic, defined, stable surfaces for hESC culture will expedite stem cell use in biomedical applications. Biotechnol. Bioeng. 2010;105: 130–140. © 2009 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号