首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7675篇
  免费   707篇
  国内免费   3篇
  2022年   68篇
  2021年   145篇
  2020年   73篇
  2019年   96篇
  2018年   118篇
  2017年   104篇
  2016年   184篇
  2015年   311篇
  2014年   361篇
  2013年   455篇
  2012年   507篇
  2011年   563篇
  2010年   322篇
  2009年   316篇
  2008年   440篇
  2007年   439篇
  2006年   390篇
  2005年   385篇
  2004年   360篇
  2003年   351篇
  2002年   357篇
  2001年   96篇
  2000年   74篇
  1999年   94篇
  1998年   99篇
  1997年   69篇
  1996年   70篇
  1995年   59篇
  1994年   68篇
  1993年   56篇
  1992年   76篇
  1991年   70篇
  1990年   53篇
  1989年   57篇
  1988年   41篇
  1987年   48篇
  1986年   42篇
  1985年   42篇
  1984年   45篇
  1983年   43篇
  1982年   44篇
  1981年   40篇
  1980年   30篇
  1979年   46篇
  1978年   44篇
  1977年   32篇
  1976年   35篇
  1974年   40篇
  1972年   37篇
  1967年   32篇
排序方式: 共有8385条查询结果,搜索用时 31 毫秒
991.
992.
The innate recognition of fungi by leukocytes is mediated by pattern recognition receptors (PRR), such as Dectin-1, and is thought to occur at the cell surface triggering intracellular signalling cascades which lead to the induction of protective host responses. In the lung, this recognition is aided by surfactant which also serves to maintain the balance between inflammation and pulmonary function, although the underlying mechanisms are unknown. Here we have explored pulmonary innate recognition of a variety of fungal particles, including zymosan, Candida albicans and Aspergillus fumigatus, and demonstrate that opsonisation with surfactant components can limit inflammation by reducing host-cell fungal interactions. However, we found that this opsonisation does not contribute directly to innate fungal recognition and that this process is mediated through non-opsonic PRRs, including Dectin-1. Moreover, we found that pulmonary inflammatory responses to resting Aspergillus conidia were initiated by these PRRs in acidified phagolysosomes, following the uptake of fungal particles by leukocytes. Our data therefore provides crucial new insights into the mechanisms by which surfactant can maintain pulmonary function in the face of microbial challenge, and defines the phagolysosome as a novel intracellular compartment involved in the innate sensing of extracellular pathogens in the lung.  相似文献   
993.
Dapagliflozin is a potent and selective sodium glucose cotransporter-2 (SGLT2) inhibitor which promotes urinary glucose excretion and induces weight loss. Since metabolic compensation can offset a negative energy balance, we explored the potential for a compensatory physiological response to the weight loss induced by dapagliflozin. Dapagliflozin was administered (0.5-5 mpk; p.o.) to diet-induced obese (DIO) rats with or without ad libitum access to food for 38 days. Along with inducing urinary glucose excretion, chronic administration of dapagliflozin dose-dependently increased food and water intake relative to vehicle-treated controls. Despite this, it reduced body weight by 4% (relative to controls) at the highest dose. The degree of weight loss was increased by an additional 9% if hyperphagia was prevented by restricting food intake to that of vehicle controls. Neither oxygen consumption (vO2) or the respiratory exchange ratio (RER) were altered by dapagliflozin treatment alone. Animals treated with dapagliflozin and pair-fed to vehicle controls (5 mpk PF-V) showed a reduction in RER and an elevation in nonfasting β-hydroxybutyrate (BHBA) relative to ad libitum-fed 5 mpk counterparts. Fasting BHBA was elevated in the 1 mpk, 5 mpk, and 5 mpk PF-V groups. Serum glucose was reduced in the fasted, but not the unfasted state. Insulin was reduced in the non-fasted state. These data suggest that in rodents, the persistent urinary glucose excretion induced by dapagliflozin was accompanied by compensatory hyperphagia, which attenuated the weight loss induced by SGLT2 inhibition. Therefore, it is possible that dapagliflozin-induced weight loss could be enhanced with dietary intervention.  相似文献   
994.
995.
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia exist in a polymicrobial biofilm associated with chronic periodontitis. The aim of this study was to culture these three species as a polymicrobial biofilm and to determine proteins important for bacterial interactions. In a flow cell all three species attached and grew as a biofilm; however, after 90 h of culture P. gingivalis and T. denticola were closely associated and dominated the polymicrobial biofilm. For comparison, planktonic cultures of P. gingivalis and T. denticola were grown separately in continuous culture. Whole cell lysates were subjected to SDS-PAGE, followed by in-gel proteolytic H(2)(16)O/H(2)(18)O labeling. From two replicates, 135 and 174 P. gingivalis proteins and 134 and 194 T. denticola proteins were quantified by LC-MALDI TOF/TOF MS. The results suggest a change of strategy in iron acquisition by P. gingivalis due to large increases in the abundance of HusA and HusB in the polymicrobial biofilm while HmuY and other iron/haem transport systems decreased. Significant changes in the abundance of peptidases and enzymes involved in glutamate and glycine catabolism suggest syntrophy. These data indicate an intimate association between P. gingivalis and T. denticola in a biofilm that may play a role in disease pathogenesis.  相似文献   
996.

Background

Cross-sectional serosurveys using IgG antibody to pertussis toxin (IgG-PT) are increasingly being used to estimate trends in recent infection independent of reporting biases.

Methods/Principal Findings

We compared the age-specific seroprevalence of various levels of IgG-PT in cross-sectional surveys using systematic collections of residual sera from Australian diagnostic laboratories in 1997/8, 2002 and 2007 with reference to both changes in the pertussis vaccine schedule and the epidemic cycle, as measured by disease notifications. A progressive decline in high-level (≥62.5 EU/ml) IgG-PT prevalence from 19% (95% CI 16–22%) in 1997/98 to 12% (95% CI 11–14%) in 2002 and 5% (95% CI 4–6%) in 2007 was consistent with patterns of pertussis notifications in the year prior to each collection. Concomitantly, the overall prevalence of undetectable (<5 EU/ml) levels increased from 17% (95% CI 14–20%) in 1997/98 to 38% (95% CI 36–40%) in 2007 but among children aged 1–4 years, from 25% (95% CI 17–34%) in 1997/98 to 62% (95% CI 56–68%) in 2007. This change followed withdrawal of the 18-month booster dose in 2003 and preceded record pertussis notifications from 2008 onwards.

Conclusions/Significance

Population seroprevalence of high levels of IgG-PT is accepted as a reliable indicator of pertussis disease activity over time within and between countries with varying diagnostic practices, especially in unimmunised age groups. Our novel findings suggest that increased prevalence of undetectable IgG-PT is an indicator of waning immunity useful for population level monitoring following introduction of acellular vaccines and/or schedule changes.  相似文献   
997.
998.
The need for new antibiotics has become pressing in light of the emergence of antibiotic-resistant strains of human pathogens. Yersinia pestis, the causative agent of plague, is a public health threat and also an agent of concern in biodefence. It is a recently emerged clonal derivative of the enteric pathogen Yersinia pseudotuberculosis. Previously, we developed a bioinformatic approach to identify proteins that may be suitable targets for antimicrobial therapy and in particular for the treatment of plague. One such target was cytidine monophosphate (CMP) kinase, which is an essential gene in some organisms. Previously, we had thought CMP kinase was essential for Y. pseudotuberculosis, but by modification of the mutagenesis approach, we report here the production and characterization of a Δcmk mutant. The isogenic mutant had a growth defect relative to the parental strain, and was highly attenuated in mice. We have also elucidated the structure of the CMP kinase to 2.32 Å, and identified three key residues in the active site that are essential for activity of the enzyme. These findings will have implications for the development of novel CMP kinase inhibitors for therapeutic use.  相似文献   
999.
The mechanism of the Golgi-to-ER transport of Golgi glycosyltransferases is not clear. We utilize a cell line expressing the core 2 N-acetylglucosaminyltransferase-M (C2GnT-M) tagged with c-Myc to explore this mechanism. By immunoprecipitation using anti-c-Myc antibodies coupled with proteomics analysis, we have identified several proteins including non-muscle myosin IIA (NMIIA), heat shock protein (HSP)-70 and ubiquitin activating enzyme E1 in the immunoprecipitate. Employing yeast-two-hybrid analysis and pulldown experiments, we show that the C-terminal region of the NMIIA heavy chain binds to the 1-6 amino acids in the cytoplasmic tail of C2GnT-M. We have found that NMIIA co-localizes with C2GnT-M at the periphery of the Golgi. In addition, inhibition or knockdown of NMIIA prevents the brefeldin A-induced collapse of the Golgi as shown by the inhibition of the migration of both Giantin, a Golgi matrix protein, and C2GnT-M, a Golgi non-matrix protein, to the ER. In contrast, knockdown of HSP70 retains Giantin in the Golgi but moves C2GnT-M to the ER, a process also blocked by inhibition or knockdown of NMIIA. Also, the intracellular distribution of C2GnT-M is not affected by knockdown of β-coatomer protein with or without inhibition of HSPs, suggesting that the Golgi-to-ER trafficking of C2GnT-M does not depend on coat protein complex-I. Further, inhibition of proteasome results in accumulation of ubiquitinated C2GnT-M, suggesting its degradation by proteasome. Therefore, NMIIA and not coat protein complex-I is responsible for transporting the Golgi glycosyltransferase to the ER for proteasomal degradation. The data suggest that NMIIA is involved in the Golgi remodeling.  相似文献   
1000.
Cytotoxic CD8 T lymphocytes (CTLs) have an astonishing ability to eliminate pathogen-infected cells. However, if uncontrolled, these CTLs could cause devastating pathology to host tissues. CD8(+) effector T cells, therefore, interact with antigen-presenting cells and other immune cells, such as regulatory T cells (Tregs), to regulate further on-site expansion and differentiation of the effector cells. This ensures protection of the host with minimal bystander pathological consequences. During prolonged chronic infections CTLs, however, often lose effector function. Induction of multiple inhibitory pathways is emerging as a major regulator converting effector CTLs into exhausted CTLs during chronic viral infections such as HIV, HCV and HBV. The mechanisms involved in induction of exhaustion during chronic viral infections are the focus of this article. Blockade of inhibitory pathways could potentially restore functional capabilities to exhausted CTLs and represents a potential immune-based intervention in chronic viral infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号