首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6388篇
  免费   583篇
  国内免费   4篇
  6975篇
  2023年   28篇
  2022年   63篇
  2021年   124篇
  2020年   65篇
  2019年   85篇
  2018年   110篇
  2017年   100篇
  2016年   162篇
  2015年   282篇
  2014年   319篇
  2013年   408篇
  2012年   434篇
  2011年   479篇
  2010年   286篇
  2009年   268篇
  2008年   392篇
  2007年   385篇
  2006年   315篇
  2005年   341篇
  2004年   315篇
  2003年   318篇
  2002年   312篇
  2001年   52篇
  2000年   36篇
  1999年   54篇
  1998年   80篇
  1997年   49篇
  1996年   56篇
  1995年   39篇
  1994年   45篇
  1993年   47篇
  1992年   41篇
  1991年   35篇
  1990年   29篇
  1989年   31篇
  1988年   24篇
  1987年   30篇
  1983年   27篇
  1982年   35篇
  1981年   26篇
  1980年   25篇
  1979年   29篇
  1978年   34篇
  1974年   29篇
  1973年   22篇
  1972年   28篇
  1970年   21篇
  1969年   24篇
  1967年   29篇
  1966年   21篇
排序方式: 共有6975条查询结果,搜索用时 15 毫秒
991.
The origins of life require reliable energy sources. One feasible energy source has not been considered until recently. This is mechanical energy-work (Hansma, 2010, 2012). The spaces between moving muscovite mica sheets are the environment in which mechanical energy is hypothesized to have been involved in the origins of life. Mechanical energy from moving mica sheets has two main sources: (1) The open-and-shut motions of mica sheets in response to water movements in and out between the sheets, and (2) Thermal cycles of day and night acting on bubble ‘defects’ between mica sheets. This mechanical energy is hypothesized to have been involved in the formation (and breaking) of covalent bonds, the rearrangement of polymers and molecular aggregates, and the budding-off of protocells, in the earliest form of cell division. Furthermore, it is hypothesized that the mechanical energy from mica sheets moving open-and-shut is the source of the common open-and-shut motions of enzymes, originating from a protobiotic era when mechanical energy was plentiful and chemical energy was not yet available.  相似文献   
992.
We report both a recombination event that places the Huntington disease gene proximal to the marker D4S98 and an extended linkage-disequilibrium study that uses this marker and confirms the existence of disequilibrium between it and the HD locus. We also report the cloning of other sequences in the region around D4S98, including a new polymorphic marker R10 and conserved sequences that identify a gene in the region of interest.  相似文献   
993.

Background

The donkey has a reputation for stoicism and its behavioural repertoire in clinical contexts is under-reported. Lack of understanding of the norms of donkey behaviour and how it may vary over time can compromise use of behavioural measures as indicators of pain or emotional state. The objective of this study was to find out whether the behaviour of working donkeys was influenced by gender, the time of day or differed between days with a view to assessing how robust these measures are for inclusion in a working donkey ethogram.

Methodology/Principal Findings

Frequency and consistency of postural and event behaviours were measured in 21 adult working donkeys (12 females; 9 males). Instantaneous (scan) and focal sampling were used to measure maintenance, lying, ingestive and investigative behaviours at hourly intervals for ten sessions on each of two consecutive days. High head carriage and biting were seen more frequently in male donkeys than females (P<0.001). Level head carriage, licking/chewing and head-shaking were observed more frequently in female donkeys (P<0.001). Tail position, ear orientation, foot stamping, rolling/lying and head-shaking behaviours were affected by time of day (P<0.001). However, only two variations in ear orientation were found to be significantly different over the two days of observations (P<0.001). Tail swishing, head shaking, foot stamping, and ears held sideways and downwards were significantly correlated (P<0.001) and are assumed to be behaviours to discourage flies.

Conclusions/Significance

All donkeys expressed an extensive behavioural repertoire, although some differences in behaviour were evident between genders. While most behaviours were consistent over time, some behaviours were influenced by time of day. Few behaviours differed between the two test days. The findings can be used to inform the development of a robust, evidence-based ethogram for working donkeys.  相似文献   
994.
Liu QA  Shio H 《PLoS genetics》2008,4(6):e1000097
Bcl-w belongs to the prosurvival group of the Bcl-2 family, while the glutamate receptor delta2 (Grid2) is an excitatory receptor that is specifically expressed in Purkinje cells, and required for Purkinje cell synapse formation. A recently published result as well as our own findings have shown that Bcl-w can physically interact with an autophagy protein, Beclin1, which in turn has been shown previously to form a protein complex with the intracellular domain of Grid2 and an adaptor protein, nPIST. This suggests that Bcl-w and Grid2 might interact genetically to regulate mitochondria, autophagy, and neuronal function. In this study, we investigated this genetic interaction of Bcl-w and Grid2 through analysis of single and double mutant mice of these two proteins using a combination of histological and behavior tests. It was found that Bcl-w does not control the cell number in mouse brain, but promotes what is likely to be the mitochondrial fission in Purkinje cell dendrites, and is required for synapse formation and motor learning in cerebellum, and that Grid2 has similar phenotypes. Mice carrying the double mutations of these two genes had synergistic effects including extremely long mitochondria in Purkinje cell dendrites, and strongly aberrant Purkinje cell dendrites, spines, and synapses, and severely ataxic behavior. Bcl-w and Grid2 mutations were not found to influence the basal autophagy that is required for Purkinje cell survival, thus resulting in these phenotypes. Our results demonstrate that Bcl-w and Grid2 are two critical proteins acting in distinct pathways to regulate mitochondrial morphogenesis and control Purkinje cell dendrite development and synapse formation. We propose that the mitochondrial fission occurring during neuronal growth might be critically important for dendrite development and synapse formation, and that it can be regulated coordinately by multiple pathways including Bcl-2 and glutamate receptor family members.  相似文献   
995.
The 2.4-kb plasmid pAP1 from Arcanobacterium (Actinomyces) pyogenes had sequence similarity within the putative replication protein and double-stranded origin with the pIJ101/pJV1 family of plasmids. pJGS84, a derivative of pAP1 containing a kanamycin resistance gene, was able to replicate in Escherichia coli and Corynebacterium pseudotuberculosis, as well as in A. pyogenes. Detection of single-stranded DNA intermediates of pJGS84 replication suggested that this plasmid replicates by the rolling circle mechanism.  相似文献   
996.
997.
Trees may survive fire through persistence of above or below ground structures. Investment in bark aids in above-ground survival while investment in carbohydrate storage aids in recovery through resprouting and is especially important following above-ground tissue loss. We investigated bark allocation and carbohydrate investment in eight common oak (Quercus) species of Sky Island mountain ranges in west Texas. We hypothesized that relative investment in bark and carbohydrates changes with tree age and with fire regime: We predicted delayed investment in bark (positive allometry) and early investment in carbohydrates (negative allometry) under lower frequency, high severity fire regimes found in wetter microclimates. Common oaks of the Texas Trans-Pecos region (Quercus emoryi, Q. gambelii, Q. gravesii, Q. grisea, Q. hypoleucoides, Q. muehlenbergii, and Q. pungens) were sampled in three mountain ranges with historically mixed fire regimes: the Chisos Mountains, the Davis Mountains and the Guadalupe Mountains. Bark thickness was measured on individuals representing the full span of sizes found. Carbohydrate concentration in taproots was measured after initial leaf flush. Bark thickness was compared to bole diameter and allometries were analyzed using major axis regression on log-transformed measurements. We found that bark allocation strategies varied among species that can co-occur but have different habitat preferences. Investment patterns in bark were related to soil moisture preference and drought tolerance and, by proxy, to expected fire regime. Dry site species had shallower allometries with allometric coefficients ranging from less than one (negative allometry) to near one (isometric investment). Wet site species, on the other hand, had larger allometric coefficients, indicating delayed investment to defense. Contrary to our expectation, root carbohydrate concentrations were similar across all species and sizes, suggesting that any differences in below ground storage are likely to be in total volume of storage tissue rather than in carbohydrate concentration.  相似文献   
998.
999.
Genetically modified mouse models have been used widely to advance our knowledge in the field of endocrinology and metabolism. A number of different approaches to generate genetically modified mice are now available, which provide the power to analyze the role of individual proteins in vivo. However, there are a number of points to be considered in the use and interpretation of these models. This review discusses the advantages and disadvantages involved in the generation and use of different genetically modified mouse models in endocrine research, including conventional techniques (e.g., overexpression, knockout, and knock-in models), tissue- and/or time-specific deletion of target genes [e.g., Cre-loxP and short interfering (si)RNA transgenic approaches], and gene-trap approaches to undertake functional genomics. This review also highlights the many factors that should be considered when assessing the phenotype of these mouse models, many of which are relevant to all murine physiological studies. These approaches are a powerful means by which to dissect the function of genes and are revolutionizing our understanding of endocrine physiology and metabolism.  相似文献   
1000.
The genomic RNA of tobacco mosaic virus (TMV), like that of other positive-strand RNA viruses, acts as a template for both translation and replication. The highly structured 3' untranslated region (UTR) of TMV RNAs plays an important role in both processes; it is not polyadenylated but ends with a tRNA-like structure (TLS) preceded by a conserved upstream pseudoknot domain (UPD). The TLS of tobamoviral RNAs can be specifically aminoacylated and, in this state, can interact with eukaryotic elongation factor 1A (eEF1A)/GTP with high affinity. Using a UV cross-linking assay, we detected another specific binding site for eEF1A/GTP, within the UPDs of TMV and crucifer-infecting tobamovirus (crTMV), that does not require aminoacylation. A mutational analysis revealed that UPD pseudoknot conformation and some conserved primary sequence elements are required for this interaction. Its possible role in the regulation of tobamovirus gene expression and replication is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号