首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7279篇
  免费   684篇
  国内免费   5篇
  7968篇
  2023年   35篇
  2022年   75篇
  2021年   143篇
  2020年   71篇
  2019年   98篇
  2018年   125篇
  2017年   114篇
  2016年   191篇
  2015年   318篇
  2014年   364篇
  2013年   457篇
  2012年   502篇
  2011年   537篇
  2010年   318篇
  2009年   307篇
  2008年   442篇
  2007年   431篇
  2006年   351篇
  2005年   379篇
  2004年   355篇
  2003年   359篇
  2002年   350篇
  2001年   79篇
  2000年   59篇
  1999年   68篇
  1998年   88篇
  1997年   60篇
  1996年   60篇
  1995年   50篇
  1994年   49篇
  1993年   49篇
  1992年   46篇
  1991年   54篇
  1990年   43篇
  1989年   41篇
  1988年   28篇
  1987年   38篇
  1986年   26篇
  1984年   30篇
  1983年   32篇
  1982年   39篇
  1981年   29篇
  1980年   30篇
  1979年   44篇
  1978年   37篇
  1977年   26篇
  1976年   37篇
  1974年   31篇
  1972年   35篇
  1967年   31篇
排序方式: 共有7968条查询结果,搜索用时 0 毫秒
961.
962.
Arsenic trioxide and neuroblastoma cytotoxicity   总被引:2,自引:0,他引:2  
The majority of aggressive forms of the childhood tumor neuroblastoma can with current treatment protocols not be cured and possess a major challenge in pediatric oncology. After initial rounds of chemotherapy, surgery and irradiation, which in most cases result in tumor regression, these aggressive neuroblastomas relapse and frequently develop drug resistance. As approximately 50% of the children with neuroblastoma have an aggressive form, there is a compelling demand for new treatment strategies. Arsenic trioxide has the capacity to kill multidrug-resistant neuro-blastoma cells in vitro and in vivo and the drug is currently being evaluated in clinical trials. In this report we discuss the background to the use of arsenic trioxide in cancer therapy and the currently known mechanisms by which arsenic trioxide kills human neuroblastoma cells.  相似文献   
963.
We are investigating the use of single chain antibody fragments (scFv) in eye drops for diagnosis and treatment of eye diseases. For ocular use, recombinant proteins must be free of bacterial endotoxin that causes inflammation in the eye. We required a means of generating high yields of scFvs with little endotoxin contamination. Using microprojectile bombardment we produced transgenic lines of the commercial wheat variety, Westonia, that express two scFvs that bind to CD4 or CD28 on the surface of rat thymocytes. A high level of expression of active scFv in the range 50-180 microg/g was measured by quantitative flow cytometry in crude extracts made from mature seeds. The levels of expression were stable over four generations of transgenic plants and mature seeds were stored for one year with little loss of scFv activity. Substantial purification of scFv was achieved by immobilised metal affinity chromatography. Compared to bacterial extracts, crude transgenic seed extracts contained only a small amount of endotoxin (150 EU/ml) that will be easily removed by purification. The transgenic wheat lines express functional scFv at levels comparable to production in bacteria and promise to be superior to bacteria for production of scFv pharmaceuticals for ocular use.  相似文献   
964.
965.
With the exponential growth of genomic sequences, there is an increasing demand to accurately identify protein coding regions (exons) from genomic sequences. Despite many progresses being made in the identification of protein coding regions by computational methods during the last two decades, the performances and efficiencies of the prediction methods still need to be improved. In addition, it is indispensable to develop different prediction methods since combining different methods may greatly improve the prediction accuracy. A new method to predict protein coding regions is developed in this paper based on the fact that most of exon sequences have a 3-base periodicity, while intron sequences do not have this unique feature. The method computes the 3-base periodicity and the background noise of the stepwise DNA segments of the target DNA sequences using nucleotide distributions in the three codon positions of the DNA sequences. Exon and intron sequences can be identified from trends of the ratio of the 3-base periodicity to the background noise in the DNA sequences. Case studies on genes from different organisms show that this method is an effective approach for exon prediction.  相似文献   
966.
Lam EK  Tai EK  Koo MW  Wong HP  Wu WK  Yu L  So WH  Woo PC  Cho CH 《Life sciences》2007,80(23):2128-2136
The gastric mucosa is frequently exposed to different exogenous and endogenous ulcerative agents. Alcoholism is one of the risk factors for the development of mucosal damage in the stomach. This study aimed to assess if a probiotic strain Lactobacillus rhamnosus GG (LGG) is capable of protecting the gastric mucosa from acute damage induced by intragastric administration of ethanol. Pre-treatment of rats with LGG at 10(9) cfu/ml twice daily for three consecutive days markedly reduced ethanol-induced mucosal lesion area by 45%. LGG pre-treatment also significantly increased the basal mucosal prostaglandin E(2) (PGE(2)) level. In addition, LGG attenuated the suppressive actions of ethanol on mucus-secreting layer and transmucosal resistance and reduced cellular apoptosis in the gastric mucosa. It is suggested that the protective action of LGG on ethanol-induced gastric mucosal lesions is likely attributed to the up-regulation of PGE(2), which could stimulate the mucus secretion and increase the transmucosal resistance in the gastric mucosa. All these would protect mucosal cells from apoptosis in the stomach.  相似文献   
967.
Cox HM 《Peptides》2007,28(2):345-351
Endocrine cells, enteric neurons and enterocytes provide an integrated functional defense against luminal factors, including nutrients, microbes and toxins. Prominent among intrinsic mediators is peptide YY (PYY) which is present in approximately 50% of colorectal endocrine cells and neuropeptide Y (NPY), a neurotransmitter expressed in submucous and myenteric nerves. Both peptides and their long fragments (PYY(3-36) and NPY(3-36)) are potent, long-lasting anti-secretory agents in vitro and in vivo and, they provide significant Y receptor-mediated absorptive tone in human and mouse colon mucosa. The main function of the colon is to absorb 90% of approximately 2l of daily ileal effluent (in adult humans) and Y-absorptive tone can contribute significantly to this electrolyte absorption. Blockade or loss of this mucosal Y-absorptive tone (i.e. with Y(1) or Y(2) antagonists) leads to hypersecretion and potentially to diarrhea, so Y agonists are predicted to rescue absorption by mimicking endogenous neuroendocrine PYY or neuronal NPY.  相似文献   
968.
Defective Tyrosyl-DNA phosphodiesterase 1 (TDP1) can cause spinocerebellar ataxia with axonal neuropathy (SCAN1), a neurodegenerative syndrome associated with marked cerebellar atrophy and peripheral neuropathy. Although SCAN1 lymphoblastoid cells show pronounced defects in the repair of chromosomal single-strand breaks (SSBs), it is unknown if this DNA repair activity is important for neurons or for preventing neurodegeneration. Therefore, we generated Tdp1-/- mice to assess the role of Tdp1 in the nervous system. Using both in vitro and in vivo assays, we found that cerebellar neurons or primary astrocytes derived from Tdp1-/- mice display an inability to rapidly repair DNA SSBs associated with Top1-DNA complexes or oxidative damage. Moreover, loss of Tdp1 resulted in age-dependent and progressive cerebellar atrophy. Tdp1-/- mice treated with topotecan, a drug that increases levels of Top1-DNA complexes, also demonstrated significant loss of intestinal and hematopoietic progenitor cells. These data indicate that TDP1 is required for neural homeostasis, and reveal a widespread requisite for TDP1 function in response to acutely elevated levels of Top1-associated DNA strand breaks.  相似文献   
969.
CD98 (otherwise known as 4F2) is an integral membrane protein with multiple functions including amino acid transport, integrin activation, cell fusion and cell activation. The molecular mechanisms coordinating these multiple functions remain unclear. We have studied CD98 heavy chain (hc) function in a human placental trophoblast cell line (BeWo). We show that cross-linking of CD98hc by incubation of cells in the presence of functional monoclonal antibodies causes cellular re-distribution of the protein from the cytoplasm to the plasma membrane as measured by flow cytometry, western blotting and quantitative immuno-electron microscopy. The latter technique also indicated that CD98hc is trafficked between cell surface and cytoplasmic pools in vesicles. Increased cell surface CD98 correlates with increased cellular fusion in BeWo cells. In addition, we show reduced LAT 1 surface expression and neutral amino acid transport in the presence of the CD98 mabs. The results thus suggest that the function of CD98 in cell fusion is distinct from its role in cellular nutrient delivery.  相似文献   
970.
Trichinella spiralis infection causes hyperexcitability in enteric after-hyperpolarising (AH) sensory neurons that is mimicked by neural, immune or inflammatory mediators known to stimulate adenylyl cyclase (AC)/cyclic 3',5'-adenosine monophosphate (cAMP) signaling. The hypothesis was tested that ongoing modulation and sustained amplification in the AC/cAMP/phosphorylated cAMP related element binding protrein (pCREB) signaling pathway contributes to hyperexcitability and neuronal plasticity in gut sensory neurons after nematode infection. Electrophysiological, immunological, molecular biological or immunochemical studies were done in T. spiralis-infected guinea-pigs (8000 larvae or saline) after acute-inflammation (7 days) or 35 days p.i., after intestinal clearance. Acute-inflammation caused AH-cell hyperexcitability and elevated mucosal and neural tissue levels of myeloperoxidase, mast cell tryptase, prostaglandin E2, leukotrine B4, lipid peroxidation, nitric oxide and gelatinase; lower level inflammation persisted 35 days p.i. Acute exposure to blockers of AC, histamine, cyclooxygenase or leukotriene pathways suppressed AH-cell hyperexcitability in a reversible manner. Basal cAMP responses or those evoked by forskolin (FSK), Ro-20-1724, histamine or substance P in isolated myenteric ganglia were augmented after T. spiralis infection; up-regulation also occurred in AC expression and AC-immunoreactivity in calbindin (AH) neurons. The cAMP-dependent slow excitatory synaptic transmission-like responses to histamine (mast cell mediator) or substance P (neurotransmitter) acting via G-protein coupled receptors (GPCR) in AH neurons were augmented by up to 2.5-fold after T. spiralis infection. FSK, histamine, substance P or T. spiralis acute infection caused a 5- to 30-fold increase in cAMP-dependent nuclear CREB phosphorylation in isolated ganglia or calbindin (AH) neurons. AC and CREB phosphorylation remained elevated 35 days p.i.. Ongoing immune activation, AC up-regulation, enhanced phosphodiesterase IV activity and facilitation of the GPCR-AC/cAMP/pCREB signaling pathway contributes to T. spiralis-induced neuronal plasticity and AH-cell hyperexcitability. This may be relevant in gut nematode infections and inflammatory bowel diseases, and is a potential therapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号