首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6310篇
  免费   574篇
  国内免费   4篇
  6888篇
  2023年   29篇
  2022年   62篇
  2021年   122篇
  2020年   65篇
  2019年   85篇
  2018年   110篇
  2017年   98篇
  2016年   164篇
  2015年   278篇
  2014年   317篇
  2013年   403篇
  2012年   431篇
  2011年   475篇
  2010年   282篇
  2009年   265篇
  2008年   389篇
  2007年   379篇
  2006年   315篇
  2005年   335篇
  2004年   313篇
  2003年   318篇
  2002年   311篇
  2001年   52篇
  2000年   33篇
  1999年   50篇
  1998年   76篇
  1997年   49篇
  1996年   53篇
  1995年   41篇
  1994年   44篇
  1993年   48篇
  1992年   41篇
  1991年   34篇
  1990年   29篇
  1989年   32篇
  1988年   22篇
  1987年   34篇
  1983年   30篇
  1982年   35篇
  1981年   26篇
  1980年   24篇
  1979年   26篇
  1978年   31篇
  1976年   20篇
  1974年   23篇
  1973年   21篇
  1972年   26篇
  1970年   20篇
  1967年   28篇
  1966年   20篇
排序方式: 共有6888条查询结果,搜索用时 15 毫秒
81.
Both reactive oxygen species (ROS) and ATP depletion may be significant in hypoxia-induced damage and death, either collectively or independently, with high energy requiring, metabolically active cells being the most susceptible to damage.We investigated the kinetics and effects of ROS production in cardiac myoblasts, H9C2 cells, under 2%, 10% and 21% O2 in the presence or absence of apocynin, rotenone and carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone.H9C2 cells showed significant loss of viability within 30 min of culture at 2% oxygen which was not due to apoptosis, but was associated with an increase in protein oxidation. However, after 4 h, apoptosis induction was observed at 2% oxygen and also to a lesser extent at 10% oxygen; this was dependent on the levels of mitochondrial superoxide anion radicals determined using dihydroethidine. Hypoxia-induced ROS production and cell death could be rescued by the mitochondrial complex I inhibitor, rotenone, despite further depletion of ATP.In conclusion, a change to superoxide anion radical steady state level was not detectable after 30 min but was evident after 4 h of mild or severe hypoxia. Superoxide anion radicals from the mitochondrion and not ATP depletion is the major cause of apoptotic cell death in cardiac myoblasts under chronic, severe hypoxia.  相似文献   
82.
The expression of 4 pluripotency genes (Oct4, Sox2, c-Myc and Klf4) in mouse embryonic fibroblasts can reprogramme them to a pluripotent state. We have investigated the expression of these pluripotency genes when human somatic 293T cells are permeabilized and incubated in extracts of mouse embryonic stem (ES) cells. Expression of all 4 genes was induced over 1–8 h. Gene expression was associated with loss of repressive histone H3 modifications and increased recruitment of RNA polymerase II at the promoters. Lamin A/C, which is typically found only in differentiated cells, was also removed from the nuclei. When 293T cells were returned to culture after exposure to ES cell extract, the expression of the pluripotency genes continued to rise over the following 48 h of culture, suggesting that long-term reprogramming of gene expression had been induced. This provides a methodology for studying the de-differentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells to a pluripotent state without genetically altering them.  相似文献   
83.
84.
Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF) mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF-mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF-mediated pathways, and we conclude that targeting molecules in HIF-VEGF signaling pathways has therapeutic potential in the treatment of chronic OM.  相似文献   
85.
The formation of adhesion complexes is the rate-limiting step for collagen phagocytosis by fibroblasts, but the role of Ca(2+) and the potential interactions of actin-binding proteins in regulating collagen phagocytosis are not well defined. We found that the binding of collagen beads to fibroblasts was temporally and spatially associated with actin assembly at nascent phagosomes, which was absent in gelsolin null cells. Analysis of tryptic digests isolated from gelsolin immunoprecipitates indicated that non-muscle (NM) myosin IIA may bind to gelsolin. Immunostaining and immunoprecipitation showed that gelsolin and NM myosin IIA associated at collagen adhesion sites. Gelsolin and NM myosin IIA were both required for collagen binding and internalization. Collagen binding to cells initiated a prolonged increase of [Ca(2+)](i), which was absent in cells null for gelsolin or NM myosin IIA. Collagen bead-induced increases of [Ca(2+)](i) were associated with phosphorylation of the myosin light chain, which was dependent on gelsolin. NM myosin IIA filament assembly, which was dependent on myosin light chain phosphorylation and increased [Ca(2+)](i), also required gelsolin. Ionomycin-induced increases of [Ca(2+)](i) overcame the block of myosin filament assembly in gelsolin null cells. We conclude that gelsolin and NM myosin IIA interact at collagen adhesion sites to enable NM myosin IIA filament assembly and localized, Ca(2+)-dependent remodeling of actin at the nascent phagosome and that these steps are required for collagen phagocytosis.  相似文献   
86.

Background  

Altered neuronal vulnerability underlies many diseases of the human nervous system, resulting in degeneration and loss of neurons. The neuroprotective slow Wallerian degeneration (Wld s ) mutation delays degeneration in axonal and synaptic compartments of neurons following a wide range of traumatic and disease-inducing stimuli, providing a powerful experimental tool with which to investigate modulation of neuronal vulnerability. Although the mechanisms through which Wld s confers neuroprotection remain unclear, a diverse range of downstream modifications, incorporating several genes/pathways, have been implicated. These include the following: elevated nicotinamide adenine dinucleotide (NAD) levels associated with nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1; a part of the chimeric Wld s gene); altered mRNA expression levels of genes such as pituitary tumor transforming gene 1 (Pttg1); changes in the location/activity of the ubiquitin-proteasome machinery via binding to valosin-containing protein (VCP/p97); and modified synaptic expression of proteins such as ubiquitin-activating enzyme E1 (Ube1).  相似文献   
87.
88.

Background

Recurrent pregnancy loss (RPL), defined as 3 or more consecutive miscarriages, is widely attributed either to repeated chromosomal instability in the conceptus or to uterine factors that are poorly defined. We tested the hypothesis that abnormal cyclic differentiation of endometrial stromal cells (ESCs) into specialized decidual cells predisposes to RPL, based on the observation that this process may not only be indispensable for placenta formation in pregnancy but also for embryo recognition and selection at time of implantation.

Methodology/Principal Findings

Analysis of mid-secretory endometrial biopsies demonstrated that RPL is associated with decreased expression of the decidual marker prolactin (PRL) but increased levels of prokineticin-1 (PROK1), a cytokine that promotes implantation. These in vivo findings were entirely recapitulated when ESCs were purified from patients with and without a history of RPL and decidualized in culture. In addition to attenuated PRL production and prolonged and enhanced PROK1 expression, RPL was further associated with a complete dysregulation of both markers upon treatment of ESC cultures with human chorionic gonadotropin, a glycoprotein hormone abundantly expressed by the implanting embryo. We postulated that impaired embryo recognition and selection would clinically be associated with increased fecundity, defined by short time-to-pregnancy (TTP) intervals. Woman-based analysis of the mean and mode TTP in a cohort of 560 RPL patients showed that 40% can be considered “superfertile”, defined by a mean TTP of 3 months or less.

Conclusions

Impaired cyclic decidualization of the endometrium facilitates implantation yet predisposes to subsequent pregnancy failure by disabling natural embryo selection and by disrupting the maternal responses to embryonic signals. These findings suggest a novel pathological pathway that unifies maternal and embryonic causes of RPL.  相似文献   
89.
Influenza viruses bind host cells following an interaction between the viral hemagglutinin (HA) protein and host cell sialylated glycoproteins and glycolipids. Differences in binding affinities of the HAs for different types of sialic acid linkages (α2-3 vs. α2-6) contribute to determining the host range of an influenza virus. The ability of an avian influenza virus HA to bind the human form of the receptor may be one requirement for an avian virus to propagate in the human population. In this paper, we describe the characterization of the HA from an H2N2 virus isolated from a Pennsylvania chicken farm in 2004. Sequence analysis revealed that this HA is a member of the Eurasian clade, and receptor binding studies show that it maintains its specificity for the avian influenza virus α2-3 linked sialic acid receptor.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号