首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7354篇
  免费   777篇
  国内免费   3篇
  2022年   58篇
  2021年   135篇
  2020年   74篇
  2019年   95篇
  2018年   126篇
  2017年   106篇
  2016年   185篇
  2015年   309篇
  2014年   346篇
  2013年   443篇
  2012年   485篇
  2011年   513篇
  2010年   313篇
  2009年   297篇
  2008年   425篇
  2007年   422篇
  2006年   368篇
  2005年   365篇
  2004年   344篇
  2003年   344篇
  2002年   342篇
  2001年   77篇
  2000年   64篇
  1999年   71篇
  1998年   87篇
  1997年   63篇
  1996年   66篇
  1995年   48篇
  1994年   53篇
  1993年   56篇
  1992年   60篇
  1991年   54篇
  1990年   54篇
  1989年   53篇
  1988年   55篇
  1987年   68篇
  1986年   47篇
  1985年   43篇
  1984年   49篇
  1983年   46篇
  1982年   56篇
  1981年   37篇
  1979年   44篇
  1978年   54篇
  1976年   37篇
  1974年   41篇
  1973年   42篇
  1972年   42篇
  1970年   35篇
  1967年   39篇
排序方式: 共有8134条查询结果,搜索用时 437 毫秒
991.
Breast milk transmission of HIV is a leading cause of infant HIV/AIDS in the developing world. Remarkably, only a small minority of breastfeeding infants born to HIV-infected mothers contract HIV via breast milk exposure, raising the possibility that immune factors in the breast milk confer protection to the infants who remain uninfected. To model HIV-specific immunity in breast milk, lactation was pharmacologically induced in Mamu-A*01(+) female rhesus monkeys. The composition of lymphocyte subsets in hormone-induced lactation breast milk was found to be similar to that in natural lactation breast milk. Hormone-induced lactating monkeys were inoculated i.v. with SIVmac251 and CD8(+) T lymphocytes specific for two immunodominant SIV epitopes, Gag p11C and Tat TL8, and SIV viral load were monitored in peripheral blood and breast milk during acute infection. The breast milk viral load was 1-2 logs lower than plasma viral load through peak and set point of viremia. Surprisingly, whereas the kinetics of the SIV-specific cellular immunity in breast milk mirrored that of the blood, the peak magnitude of the SIV-specific CD8(+) T lymphocyte response in breast milk was more than twice as high as the cellular immune response in the blood. Furthermore, the appearance of the SIV-specific CD8(+) T lymphocyte response in breast milk was associated with a reduction in breast milk viral load, and this response remained higher than that in the blood after viral set point. This robust viral-specific cellular immune response in breast milk may contribute to control of breast milk virus replication.  相似文献   
992.
Studies on animal models of epilepsy and cerebellar ataxia, e.g., stargazer mice (stg) have identified changes in the GABAergic properties of neurones associated with the affected brain loci. Whether these changes contribute to or constitute homeostatic adaptations to a state of altered neuronal excitability is as yet unknown. Using cultured cerebellar granule neurones from control [+/+; alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR)-competent, Kainate receptor (KAR)-competent] and stg (AMPAR-incompetent, KAR-competent), we investigated whether non-NMDA receptor (NMDAR) activity regulates GABA(A) receptor (GABAR) expression. Neurones were maintained in 5 mmol/L KCl-containing basal media or depolarizing media containing either 25 mmol/L KCl or the non-NMDAR agonist kainic acid (KA) (100 micromol/L). KCl- and KA-mediated depolarization down-regulated GABAR alpha1, alpha6 and beta2, but up-regulated alpha4, beta3 and delta subunits in +/+ neurones. The KCl-evoked but not KA-evoked effects were reciprocated in stg neurones compatible with AMPAR-regulation of GABAR expression. Conversely, GABAR gamma2 expression was insensitive to KCl-mediated depolarization, but was down-regulated by KA-treatment in a 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-reversible manner in +/+ and stg neurones compatible with a KAR-mediated response. KA-mediated up-regulation of GABAR alpha4, beta3 and delta was inhibited by L-type voltage-gated calcium channel (L-VGCC) blockers and the Ca2+/calmodulin-dependent protein kinase inhibitor, 4-[(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinoline sulfonic acid ester (KN-62). Up-regulation of GABAR alpha4 and beta3 was also prevented by calcineurin (CaN) inhibitors, FK506 and cyclosporin A. Down-regulation of GABAR alpha1, alpha6 and beta2 was independent of L-VGCC activity, but was prevented by inhibitors of CaN. Thus, we provide evidence that a KAR-mediated and at least three mutually exclusive AMPAR-mediated signalling mechanisms regulate neuronal GABAR expression.  相似文献   
993.
Diurnal rates of leaf elongation vary in maize (Zea mays L.) and are characterized by a decline each afternoon. The cause of the afternoon decline was investigated. When the atmospheric environment was held constant in a controlled environment, and water and nutrients were adequately supplied to the soil or the roots in solution, the decline persisted and indicated that the cause was internal. Inside the plants, xylem fluxes of water and solutes were essentially constant during the day. However, the forces moving these components changed. Tensions rose in the xylem, and gradients of growth-induced water potentials decreased in the surrounding growing tissues of the leaf. These potentials, measured with isopiestic thermocouple psychrometry, changed because the roots became less conductive to water as the day progressed. The increased tensions were reversed by applying pressure to the soil/root system, which rehydrated the leaf. Afternoon elongation immediately recovered to rapid morning rates. The rapid morning rates did not respond to soil/root pressurization. It was concluded that increased xylem tension in the afternoon diminished the gradients in growth-induced water potential and thus inhibited elongation. Because increased tensions cause a similar but larger inhibition of elongation if maize dehydrates, these hydraulics are crucial for shaping the growth-induced water potential and thus the rates of leaf elongation in maize over the entire spectrum of water availability.  相似文献   
994.
DNA vaccination is an invaluable approach for immune therapy in that it lacks vector interference and thus permits repeated vaccination boosts. However, by themselves, DNA-based vaccines are typically poor inducers of Ag-specific immunity in humans and non-human primates. Cytokines, such as IL-12 and IL-15, have been shown to be potent adjuvants for the induction and maintenance of cellular immune responses, in particular during HIV infection. In this study, we examined the ability of therapeutic vaccination with SIV-DNA+IL-12 or IL-15 as molecular adjuvants to improve DNA vaccine potency and to enhance memory immune responses in SIV-infected macaques. Our results demonstrate that incorporating IL-12 into the vaccine induces SIV-specific CD8 effector memory T cell (T(EM)) functional responses and enhances the capacity of IFN-gamma-producing CD8 T(EM) cells to produce TNF. Lower levels of PD-1 were expressed on T cells acquiring dual function upon vaccination as compared with mono-functional CD8 T(EM) cells. Finally, a boost with SIV-DNA+IL-15 triggered most T cell memory subsets in macaques primed with either DNA-SIV or placebo but only CD8 T(EM) in macaques primed with SIV-DNA+IL-12. These results indicate that plasmid IL-12 and IL-15 cytokines represent a significant addition to enhance the ability of therapeutic DNA vaccines to induce better immunity.  相似文献   
995.
Dendritic cell (DC)-based immunotherapeutics must induce robust CTL capable of killing tumor or virally infected cells in vivo. In this study, we show that RNA electroporated post maturation and coelectroporated with CD40L mRNA (post maturation electroporation (PME)-CD40L DC) generate high-avidity CTL in vitro that lyse naturally processed and presented tumor Ag. Unlike cytokine mixture-matured DC which induce predominantly nonproliferative effector memory CD45RA(+) CTL, PME-CD40L DC prime a novel subset of Ag-specific CTL that can be expanded to large numbers upon sequential DC stimulation in vitro. We have defined these cells as rapidly expanding high-avidity (REHA) CTL based on: 1) the maintenance of CD28 expression, 2) production of high levels of IFN-gamma and IL-2 in response to Ag, and 3) the demonstration of high-avidity TCR that exhibit strong cytolytic activity toward limiting amounts of native Ag. We demonstrate that induction of REHA CTL is dependent at least in part on the production of IL-12. Interestingly, neutralization of IL-12 did not effect cytolytic activity of REHA CTL when Ag is not limiting, but did result in lower TCR avidity of Ag-reactive CTL. These results suggest that PME-CD40L DC are uniquely capable of delivering the complex array of signals needed to generate stable CD28(+) REHA CTL, which if generated in vivo may have significant clinical benefit for the treatment of infectious disease and cancer.  相似文献   
996.
B cells are important for the development of most autoimmune diseases. B cell depletion immunotherapy has emerged as an effective treatment for several human autoimmune diseases, although it is unclear whether B cells are necessary for disease induction, autoantibody production, or disease progression. To address the role of B cells in a murine model of spontaneous autoimmune thyroiditis (SAT), B cells were depleted from adult NOD.H-2h4 mice using anti-mouse CD20 mAb. Anti-CD20 depleted most B cells in peripheral blood and cervical lymph nodes and 50-80% of splenic B cells. Flow cytometry analysis showed that marginal zone B cells in the spleen were relatively resistant to depletion by anti-CD20, whereas most follicular and transitional (T2) B cells were depleted after anti-CD20 treatment. When anti-CD20 was administered before development of SAT, development of SAT and anti-mouse thyroglobulin autoantibody responses were reduced. Anti-CD20 also reduced SAT severity and inhibited further increases in anti-mouse thyroglobulin autoantibodies when administered to mice that already had autoantibodies and thyroid inflammation. The results suggest that B cells are necessary for initiation as well as progression or maintenance of SAT in NOD.H-2h4 mice.  相似文献   
997.
T cells specific for proinsulin and islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP) induce diabetes in nonobese diabetic (NOD) mice. TCR transgenic mice with CD8(+) T cells specific for IGRP(206-214) (NOD8.3 mice) develop accelerated diabetes that requires CD4(+) T cell help. We previously showed that immune responses against proinsulin are necessary for IGRP(206-214)-specific CD8(+) T cells to expand. In this study, we show that diabetes development is dramatically reduced in NOD8.3 mice crossed to NOD mice tolerant to proinsulin (NOD-PI mice). This indicates that immunity to proinsulin is even required in the great majority of NOD8.3 mice that have a pre-existing repertoire of IGRP(206-214)-specific cells. However, protection from diabetes could be overcome by inducing islet inflammation either by a single dose of streptozotocin or anti-CD40 agonist Ab treatment. This suggests that islet inflammation can substitute for proinsulin-specific CD4(+) T cell help to activate IGRP(206-214)-specific T cells.  相似文献   
998.
Skeletal muscles account for more than 30% of the human body, yet mechanisms of immunological tolerance to this tissue remain mainly unexplored. To investigate the mechanisms of tolerance to muscle-specific proteins, we generated transgenic mice expressing the neo-autoantigen OVA exclusively in skeletal muscle (SM-OVA mice). SM-OVA mice were bred with OT-I or OT-II mice that possess a transgenic TCR specific for OVA peptides presented by MHC class I or class II, respectively. Tolerance to OVA did not involve clonal deletion, anergy or an increased regulatory T cell compartment. Rather, CD4+ T cell tolerance resulted from a mechanism of ignorance revealed by their response following OVA immunization. In marked contrast, CD8+ T cells exhibited a loss of OVA-specific cytotoxic activity associated with up-regulation of the immunoregulatory programmed death-1 molecule. Adoptive transfer experiments further showed that OVA expression in skeletal muscle was required to maintain this functional tolerance. These results establish a novel asymmetric model of immunological tolerance to muscle autoantigens involving Ag ignorance for CD4+ T cells, whereas muscle autoantigens recognized by CD8+ T cells results in blockade of their cytotoxic function. These observations may be helpful for understanding the breakage of tolerance in autoimmune muscle diseases.  相似文献   
999.
1000.
Although microsatellite mutation rates generally increase with increasing length of the repeat tract, interruptions in a microsatellite may stabilize it. We have performed a direct analysis of the effect of microsatellite interruptions on mutation rate and spectrum in cultured mammalian cells. Two mononucleotide sequences (G17 and A17) and a dinucleotide [(CA)17] were compared with interrupted repeats of the same size and with sequences of 8 repeat units. MMR-deficient (MMR) cells were used for these studies to eliminate effects of this repair process. Mutation rates were determined by fluctuation analysis on cells containing a microsatellite sequence at the 5′ end of an antibiotic-resistance gene; the vector carrying this sequence was integrated in the genome of the cells. In general, interrupted sequences had lower mutation rates than perfect ones of the same size, but the magnitude of the difference was dependent upon the sequence of the interrupting base(s). Some interrupted repeats had mutation rates that were lower than those of perfect sequences of the same length but similar to those of half the length. This suggests that interrupting bases effectively divide microsatellites into smaller repeat runs with mutational characteristics different from those of the corresponding full-length microsatellite. We conclude that interruptions decrease microsatellite mutation rate and influence the spectrum of frameshift mutations. The sequence of the interrupting base(s) determines the magnitude of the effect on mutation rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号