首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8963篇
  免费   741篇
  国内免费   6篇
  9710篇
  2023年   36篇
  2022年   101篇
  2021年   184篇
  2020年   88篇
  2019年   127篇
  2018年   167篇
  2017年   139篇
  2016年   246篇
  2015年   422篇
  2014年   491篇
  2013年   596篇
  2012年   692篇
  2011年   697篇
  2010年   452篇
  2009年   418篇
  2008年   583篇
  2007年   542篇
  2006年   470篇
  2005年   457篇
  2004年   432篇
  2003年   426篇
  2002年   374篇
  2001年   107篇
  2000年   88篇
  1999年   90篇
  1998年   87篇
  1997年   68篇
  1996年   67篇
  1995年   44篇
  1994年   47篇
  1993年   55篇
  1992年   47篇
  1991年   41篇
  1990年   31篇
  1989年   35篇
  1988年   23篇
  1987年   30篇
  1983年   28篇
  1982年   36篇
  1981年   26篇
  1980年   24篇
  1979年   27篇
  1978年   30篇
  1976年   20篇
  1974年   23篇
  1973年   22篇
  1972年   27篇
  1970年   20篇
  1967年   28篇
  1966年   20篇
排序方式: 共有9710条查询结果,搜索用时 15 毫秒
11.
Chromosomal replicons have been described as the cytological counterpart of DNA replicon clusters and have previously been studied in vitro using premature chromosome condensation-sister chromatid differentiation (PCC-SCD) techniques. Chromosomal replicons are visualized as small SCD segments in S-phase cells, and measurement of these segments can provide estimates of relative chromosomal replicon size corresponding to DNA replicon clusters functioning coordinately in S-phase. Current hypotheses of sister chromatid exchange (SCE) formation postulate that sites of SCE induction are associated with active replicons or replicon clusters. We have applied the PCC-SCD technique to in vivo studies of mouse bone marrow cells that have been treated with cyclophosphamide (CP) for two cell cycles. We have been able to visualize chromosomal replicons, as well as SCEs which have been induced in vivo by CP treatment, simultaneously in the same cells. Chromosomal replicons visualized as small SCD segments were measured in PCC cells classified at early or late S-phase based on SCD segment size prevalence. Early S-phase (E/S) PCC cells contained 90% of the SCD segments measured clustered in a segment size range of 0.1 to 0.8 m with a peak value around 0.3 to 0.6 m regardless of CP treatment. As the cells progressed through S-phase, late S-phase (L/S) PCC cells were characterized by the appearance of larger SCD segments and even whole SCD chromosomes in addition to small SCD segments. A concentration of units around 0.4 to 1.0 m was found for L/S SCD segment size distributions regardless of CP treatment with an apparent bimodal profile. Our in vivo data support the existence of a subunit organization of chromosomal replication with a basic functional unit being 0.3 to 0.6 m in size. In addition, we have found that this chromosomal unit of replication or chromosomal replicon does not seem to be functionally perturbed by the mutagen CP. We also found that small SCD segments of 0.4 to 0.7 m in length were involved in the formation of an SCE, suggesting that both spontaneous and CP-induced SCEs occur between chromosomal replicons. These findings provide direct cytogenetic evidence to support a replicon cluster/chromosomal replicon model for SCE formation.  相似文献   
12.
13.
Acetyl-l-carnitine as a precursor of acetylcholine   总被引:2,自引:0,他引:2  
Synthesis of [3H]acetylcholine from [3H]acetyl-l-carnitine was demonstrated in vitro by coupling the enzyme systems choline acetyltransferase and carnitine acetyltransferase. Likewise, both [3H] and [14C] labeled acetylcholine were produced when [3H]acetyl-l-carnitine andd-[U-14C] glucose were incubated with synaptosomal membrane preparations from rat brain. Transfer of the acetyl moiety from acetyl-l-carnitine to acetylcholine was dependent on concentration of acetyl-l-carnitine and required the presence of coenzyme A, which is normally produced as an inhibitory product of choline acetyltransferase. These results provide further evidence for a role of mitochondrial carnitine acetyltransferase in facilitating transfer of acetyl groups across mitochondrial membranes, thus regulating the availability in the cytoplasm of acetyl-CoA, a substrate of choline acetyltransferase. They are also consistent with a possible utility of acetyl-l-carnitine in the treatment of age-related cholinergic deficits.  相似文献   
14.
A genetic map of the Cf-9 to Dmd region of the mouse X chromosome has been established by typing 100 offspring from a Mus musculus x Mus spretus interspecific backcross for the four loci Cf-9, Cdr, Gabra3, and Dmd. The following order and genetic distances in centimorgans were determined: (Cf-9)-2.4 +/- 1.7-(Cdr)-2.0 +/- 1.4-(Gabra3)-4.1 +/- 2.0-(Dmd). Six backcross offspring carrying X chromosomes with recombination events in the Cdr-Dmd region were identified. These recombination events were used to define the position of Fmr-1, the murine homologue of FMR1, which is the gene implicated in the fragile X syndrome in man, and that of DXS296h, the murine homologue of DXS296. Both Fmr-1 and DXS296h were mapped into the same recombination interval as Gabra3 on the mouse X chromosome. These findings provide strong support for the concept that the order of loci lying in the Cf-9 to Gabra3 segment of the X chromosome is highly conserved between human and mouse.  相似文献   
15.
The cytogenetic effects of the antimetabolite, cytosine arabinoside (Ara-C) are evaluated using in vivo and in vitro test systems and applying multiple parameters. The in vivo assay was carried out on 8-10-week-old inbred Swiss albino male mice using bone marrow as the somatic test system and the cells of testis as the meiotic test system. In vitro human leukocyte cultures were also employed. In vivo experimental doses were computed on surface area basis within the therapeutic dose range and injected intraperitoneally and for in vitro they were calculated on blood volume basis. Evaluation of somatic chromosome mutations included conventional screening for chromosome aberrations, variations in mitotic index and sister-chromatid exchanges (SCEs) by in vivo and in vitro methods besides studies on meiotic test systems using conventional screening for chromosome and sperm-head abnormalities. The quantitative data were subjected to statistical analysis by applying appropriate tests to evaluate their significance. The results of in vivo and in vitro experiments reveal the chromosome mutational activity of the compound. This is further supported by data on SCEs from both systems. However, a comparison of both demonstrated a differential mutagenic response of the drug, more in vivo than in vitro. This is also true for SCEs. Even though the mechanisms involved in causing chromosome aberrations and SCEs are different, the data on both corroborate each other on induction of chromosome mutations.  相似文献   
16.
Summary We have devised techniques to culture whole, dissected embryos of Drosophila melanogaster. We examine multiple aspects of the morphological and physiological development of the epidermis, musculature, nervous system, and internal organs in this cultured preparation, and show that in vitro development closely parallels normal embryogenesis. These techniques permit a wide range of experimental manipulations during embryogenesis and allow us to extend observations through late embryonic stages, after cuticle deposition. Applications of this technique are presented.  相似文献   
17.
A strain of Vibrio cholerae, which had been engineered to express high levels of the non-toxic B subunit (EtxB) of Escherichia coli heat-labile enterotoxin, was subjected to transposon (TnphoA) mutagenesis. Two chromosomal TnphoA insertion mutations of the strain were isolated that showed a severe defect in the amount of EtxB produced. The loci disrupted by TnphoA in the two mutant derivatives were cloned and sequenced, and this revealed that the transposon had inserted at different sites in the same gene. The open reading frame of the gene predicts a 200-amino-acid exported protein, with a Cys-X-X-Cys motif characteristic of thioredoxin, protein disulphide isomerase, and DsbA (a periplasmic protein required for disulphide bond formation in E. coli). The V. cholerae protein exhibited 40% identity with the DsbA protein of E. coli, including 90% identity in the region of the active-site motif. Introduction of a plasmid encoding E. coli DsbA into the V. cholerae TnphoA derivatives was found to restore enterotoxin formation, whilst expression of Etx or EtxB in a dsbA mutant of E. coli confirmed that DsbA is required for enterotoxin formation in E. coli. These results suggest that, since each EtxB subunit contains a single intramolecular disulphide bond, a transient intermolecular interaction with DsbA occurs during toxin subunit folding which catalyses formation of the disulphide in vivo.  相似文献   
18.
A dominant allele at the Mi locus on chromosome 6 of tomato (Lycopersicon esculentum Mill) confers resistance to three species of root-knot nematodes (Meloidogyne). The resistance, which is associated with a localized necrotic response, was originally introduced into tomato from the wild species Lycopersicon peruvianum. As a step towards the molecular cloning of Mi, we have identified closely linked DNA markers from both cDNA and genomic DNA libraries as restriction fragment length polymorphisms (RFLPs). DNA from tomato populations segregating for nematode resistance was analyzed to generate a high-resolution genetic map of this region. Additional information on gene order was obtained by comparing the size of the introgressed L. peruvianum chromosomal segment within a collection of nematode-resistant tomato lines. Among the four cDNA markers that are tightly linked to Mi, three are dominant, i.e. L. peruvianum-specific. One cDNA marker corresponds to a gene family comprising 20-30 members, one of which is diagnostic for all nematode-resistant genotypes tested. The presence of non-homologous sequences around the Mi gene may contribute to the suppression of recombination in this region of the genome in crosses heterozygous for Mi. The potential of 'walking' from closely linked markers to Mi is discussed.  相似文献   
19.
20.
The interpretation of the majority of studies of Duchenne muscular dystrophy (DMD) has been complicated by the heterogeneous composition of the cultures used. In addition to muscle cells, muscle tissue contains adipocytes and fibroblasts and the proportion of these cell types varies, especially in disease states. To overcome this problem we developed culture conditions which permitted isolation and characterization of pure populations of clonally derived human muscle cells [1, 2]. Here we report the successful application of these methods to muscle cells from biopsies of individuals with diagnosed DMD. The normal and mutant human muscle cells were used in experiments of muscle differentiation in the same manner as cell lines. Frozen-stored cells were thawed, plated in a series of replicate plates, and allowed to differentiate under similar culture conditions. Yet, in contrast with cell lines, the cells were karyotypically normal, not altered by adaptation to long-term culture, and had a finite lifespan. We have systematically analysed specific properties of the normal and DMD muscle cells which differentiated in culture. The kinetics and extent of myoblast fusion, myotube morphology, and the accumulation and distribution of membrane acetylcholine receptors were monitored. In addition, the isozyme composition of creatine kinase and its intracellular and extracellular distribution were determined. Our results indicate that DMD muscle cells are fully capable of initiating myogenesis in culture and do not differ from normal muscle in several important parameters of differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号