首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   41篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2003年   3篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   5篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
  1965年   2篇
  1964年   1篇
  1953年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
81.
Chest wall distortion leads to increased minute volume displacement of the diaphragm (MVDD) and diaphragmatic work (DW) in preterm infants. Lung mechanics, MVDD, and DW were measured at weekly intervals in six preterm infants between 29 and 36 wk postconceptional age. Over the period of study, MVDD and DW decreased significantly, whereas dynamic lung compliance consistently increased. There was no consistent change in the pulmonary ventilation, total pulmonary resistance, the work performed on the lungs, or the change in intraesophageal pressure with tidal breathing. The improvement in the stability of the chest wall, as indicated by the change in these dynamic measurements of diaphragmatic function, parallels the decrease in static chest wall compliance and the clinical course of the resolution of apnea of prematurity.  相似文献   
82.
It has been investigated whether diurnal rhythms of sucrose-phosphate synthase (SPS) are involved in controlling the rate of photosynthetic sucrose synthesis. Extracts were prepared from spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) leaves and assayed for enzyme activity. The activity of SPS increased in parallel with a rising rate of photosynthesis, and was increased by feeding mannose and decreased by supplying inorganic phosphate. In leaf material where sucrose had accumulated during the photoperiod or when sucrose was supplied exogenously, SPS activity decreased. During a diurnal rhythm, SPS activity increased after illumination, declined gradually during the light period, decreased further after darkening and then recovered gradually during the night. These changes did not involve an alteration of the maximal activity, but were caused by changes in the kinetic properties, revealed as a change in sensitivity to inhibition by inorganic phosphate. In experiments which modelled the response of SPS to changing metabolite concentrations, it was shown that these alterations of kinetic properties would strongly modify the activity of SPS in vivo. It is proposed that SPS can exist in kinetically distinct forms in vivo, and that the distribution between these forms can be rapidly altered. As the rate of photosynthesis increases there is an activation of SPS, which may be directly or indirectly linked to changes in the availability of Pi. This activation can be modified by factors related to the accumulation of sucrose. Under normal conditions there is a balance between these factors, and the leaf contains a mixture of the different forms of SPS.Abbreviations Chl chlorophyll - Frul,6bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose-6-phosphate - Fru1,6bisPase fructose-1,6-bisphosphatase - Fru6P 2kinase fructose-6-phosphate, 2kinase - Fru2,6bisPase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - Pj inorganic phosphate - SPS sucrose-phosphate synthase - UDPGLc uridine 5-diphosphate glucose  相似文献   
83.
The present studies provide the first measurements of the resistance to diffusive flux of metabolites between mesophyll and bundle sheath cells of C4 plants. Species examined were Panicum miliaceum, Urochloa panicoides, Atriplex spongiosa, and Zea mays. Diffusive flux of metabolites into isolated bundle sheath cells was monitored by following their metabolic transformation. Evidence was obtained that the observed rapid fluxes occurred via functional plasmodesmata. Diffusion constants were determined from the rate of transformation of limiting concentrations of metabolites via cytosolic enzymes with high potential velocities and favorable equilibrium constants. Values on a leaf chlorophyll basis ranged between 1 and 5 micromoles per minute per milligram of chlorophyll per millimolar gradient depending on the molecular weight of the metabolite and the source of bundle sheath cells. Diffusion of metabolites into these cells was unaffected by a wide variety of compounds including respiratory inhibitors, monovalent and divalent cations, and plant hormones, but it was interrupted by treatments inducing cell plasmolysis. The molecular weight exclusion limit for permeation of compounds into bundle sheath cells was in the range of 850 to 900. These cells provide an ideal system for the quantitative study of plasmodesmatal function.  相似文献   
84.
The permeability of mitochondria from pea (Pisum sativum L. var Kleine Rheinländerin) leaves, etiolated pea shoots, and potato (Solanum tuberosum) tuber for malate, oxaloacetate, and other dicarboxylates was investigated by measurement of mitochondrial swelling in isoosmolar solutions of the above mentioned metabolites. For the sake of comparison, parallel experiments were also performed with rat liver mitochondria. Unlike the mammalian mitochondria, the plant mitochondria showed only little swelling in ammonium malate plus phosphate media but a dramatic increase of swelling on the addition of valinomycin. Similar results were obtained with oxaloacetate, maleate, fumarate, succinate, and malonate. n-Butylmalonate and phenylsuccinate, impermeant inhibitors of malate transport in mammalian mitochondria, had no marked inhibitory effect on valinomycin-dependent malate and oxaloacetate uptake of the plant mitochondria. The swelling of plant mitochondria in malate plus valinomycin was strongly inhibited by oxaloacetate, at a concentration ratio of oxaloacetate/malate of 10−3. From these findings it is concluded: (a) In a malate-oxaloacetate shuttle transferring redox equivalents from the mitochondrial matrix to the cytosol, malate and oxaloacetate are each transported by electrogenic uniport, probably linked to each other for the sake of charge compensation. (b) The transport of malate between the mitochondrial matrix and the cytosol is controlled by the oxaloacetate level in such a way that a redox gradient can be maintained between the NADH/NAD systems in the matrix and the cytosol. (c) The malate-oxaloacetate shuttle functions mainly in the export of malate from the mitochondria, whereas the import of malate as a respiratory substrate may proceed by the classical malate-phosphate antiport.  相似文献   
85.
The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete.  相似文献   
86.
The aim of this work was to investigate the mechanism of action of ferrocifen (Fc-OH-TAM), the ferrocenyl analog of 4-hydroxy-tamoxifen (OH-TAM), which is the active metabolite of tamoxifen, the drug most widely prescribed for treatment of hormone-dependent breast cancers. Fc-OH-TAM showed an anti-proliferative effect on the six breast cancer cell lines tested, 3 ERα positive (MCF-7, T-47D, ZR-75-1) and 3 ERα negative (MDA-MB-231, SKBR-3, Hs578-T) whatever their ER (estrogen receptor) status. However, the mechanism of action of the ferrocenyl derivative appeared to differ depending on the status of the ERα. Analysis of cell cycle distribution revealed that Fc-OH-TAM first recruits cells in the S phase in both ERα positive and ERα negative cells. In the presence of ERα, Fc-OH-TAM allowed cell cycle progression, with a subsequent blockade in G0/G1, whereas in the absence of ERα, cells remained in the S phase. Significant production of ROS was observed only in the presence of Fc-OH-TAM in both ERα positive and negative breast cancer cell lines. Within our experimental conditions, this ROS production is associated with cell cycle arrest and senescence rather than apoptosis. In the presence of ERα, Fc-OH-TAM seems to mainly act in the same way as OH-TAM but also induces an additional cytotoxic effect not mediated by the receptor. Our data suggest that this cytotoxic effect of Fc-OH-TAM is expressed via a mechanism of action distinct from the non-genomic pathway observed with high doses of OH-Tamoxifen.  相似文献   
87.
U. I. Flügge  H. W. Heldt 《BBA》1981,638(2):296-304
This report describes the solubilization and purification of the phosphate translocator of spinach chloroplasts and the reconstitution of its activity by incorporation into liposomes. (1) Prior to the isolation, the carrier is specifically labelled by treatment with 2,4,6-trinitrobenzenesulfonic acid and NaB[3H]H4. (2) After preextraction of purified envelope membranes with Brij 58 for removing other loosely bound membrane proteins, the phosphate translocator is extracted with Triton X-100. After passing the resulting extract over a DEAE-Sepharose column followed by sucrose density gradient ultracentrifugation, the translocator protein is purified to apparent homogeneity. The 5–6-fold purification thus obtained concurs with earlier findings that the phosphate translocator protein represents 15–20% of the envelope membrane protein. This highly purified protein is suitable for studies of the hydrodynamic parameters of the translocator. (3) Since the exposure to detergents affects the activity of the translocator protein, alternatively, a rapid batch procedure for the purification of the translocator protein employing hydroxyapatite is used, yielding within 15 min the phosphate translocator protein of about 70% purity. (4) After incorporation of this protein fraction into liposomes, a specific transport of phosphate into these liposomes is observed, which van be terminated by inhibitor stop with pyridoxal 5′-phosphate. This uptake is only observed when the liposomes have been preloaded with phosphate or 3-phosphoglycerate, but not with 2-phosphoglycerate. Thus, like in intact chloroplasts, also the reconstituted transport facilitates an obligatory and specific counter exchange of anions. The apparent Km for the transport of phosphate by this reconstituted system is about 0.8 mM, which is comparable to the corresponding value in intact chloroplasts. The calculated turnover of 150–300 min−1 (20°C) accounts for 3–6% of the original activity.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号