首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   20篇
  2023年   3篇
  2022年   1篇
  2021年   8篇
  2020年   10篇
  2019年   3篇
  2018年   9篇
  2017年   13篇
  2016年   8篇
  2015年   15篇
  2014年   20篇
  2013年   17篇
  2012年   22篇
  2011年   20篇
  2010年   19篇
  2009年   8篇
  2008年   15篇
  2007年   12篇
  2006年   19篇
  2005年   7篇
  2004年   12篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
31.
Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells   总被引:7,自引:0,他引:7  
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain chondrogenesis and osteogenesis. We hypothesize that BMP-2 induces an osteogenic, and BMP-7 a chondrogenic phenotype in adipose tissue-derived mesenchymal stem cells (AT-MSCs). We compared the effects of a short 15min BMP-2 or BMP-7 (10ng/ml) treatment on osteogenic and chondrogenic differentiation of AT-MSCs. Gene expression was studied 4 and 14 days after BMP-treatment. At day 4 BMP-2, but not BMP-7, stimulated runx-2 and osteopontin gene expression, and at day 14 BMP-7 down-regulated expression of these genes. At day 4 BMP-2 and BMP-7 stimulated biglycan gene expression, which was down-regulated by BMP-7 at day 14. BMP-7 stimulated aggrecan gene expression at day 14. Our data indicate that BMP-2 treatment for 15min induces osteogenic differentiation, whereas BMP-7 stimulates a chondrogenic phenotype of AT-MSCs. Therefore, AT-MSCs triggered for only 15min with BMP-2 or BMP-7 provide a feasible tool for bone and cartilage tissue engineering.  相似文献   
32.
A spherical porous glass support Trisoperl (TRISO) with four pore diameters (? 47.8; 55.9; 102.6, and 108.8 nm) was characterized and selected for application in an optical flow cell immunosensor, in comparison with controlled pore glass (CPG). The TRISO support was functionalized with aldehyde and isothiocyanate (-NCS) groups to attach bovine serum albumin and alkaline phosphatase (AP). The TRISO isothiocyanate pore diameter 47.8 nm (TRISO(-NCS) 47.8 nm) showed the better potential to be used in the immunosensor. It immobilized more protein (19.3 mg AP per g support) while presenting an optical performance comparable to the CPG. CPG(-NCS) and TRISO(-NCS) 47.8 nm were tested in the immunosensor model where the saturation of the Goat IgG immobilized in the supports with Monoclonal Anti-Goat IgG conjugated with Cyanine-5 was reached, followed by regeneration with the elution buffer modified PBS pH 2.0. The TRISO(-NCS) 47.8 nm presented lower fluorescence intensity at saturation (around 39 AU) than CPG(-NCS) (150 to 104 AU), but revealed a major advantage related to the uniform arrangement of the spherical particles in the flow cell, generating no significant fluorescence differences between gravity and flow package.  相似文献   
33.
The tropane alkaloid (TA) scopolamine is suggested to protect Brugmansia suaveolens (Solanaceae) against herbivorous insects. To test this prediction in a natural environment, scopolamine was induced by methyl jasmonate (MJ) in potted plants which were left 10?days in the field. MJ-treated plants increased their scopolamine concentration in leaves and herbivory decreased. These findings suggest a cause?Ceffect relationship. However, experiments in laboratory showed that scopolamine affect differently the performance of the specialist larvae of the ithomiine butterfly Placidina euryanassa (C. Felder & R. Felder) and the generalist fall armyworm Spodoptera frugiperda (J. E. Smith): the specialist that sequester this TA from B. suaveolens leaves was not negatively affected, but the generalist was. Therefore, scopolamine probably acts only against insects that are not adapted to TAs. Other compounds that are MJ elicited may also play a role in plant resistance against herbivory by generalist and specialist insects, and deserve future investigations.  相似文献   
34.
Predicting the biodiversity impacts of global warming implies that we know where and with what magnitude these impacts will be encountered. Amphibians are currently the most threatened vertebrates, mainly due to habitat loss and to emerging infectious diseases. Global warming may further exacerbate their decline in the near future, although the impact might vary geographically. We predicted that subtropical amphibians should be relatively susceptible to warming‐induced extinctions because their upper critical thermal limits (CTmax) might be only slightly higher than maximum pond temperatures (Tmax). We tested this prediction by measuring CTmax and Tmax for 47 larval amphibian species from two thermally distinct subtropical communities (the warm community of the Gran Chaco and the cool community of Atlantic Forest, northern Argentina), as well as from one European temperate community. Upper thermal tolerances of tadpoles were positively correlated (controlling for phylogeny) with maximum pond temperatures, although the slope was steeper in subtropical than in temperate species. CTmax values were lowest in temperate species and highest in the subtropical warm community, which paradoxically, had very low warming tolerance (CTmaxTmax) and therefore may be prone to future local extinction from acute thermal stress if rising pond Tmax soon exceeds their CTmax. Canopy‐protected subtropical cool species have larger warming tolerance and thus should be less impacted by peak temperatures. Temperate species are relatively secure to warming impacts, except for late breeders with low thermal tolerance, which may be exposed to physiological thermal stress in the coming years.  相似文献   
35.
Loss of spindle-pole integrity during mitosis leads to multipolarity independent of centrosome amplification. Multipolar-spindle conformation favours incorrect kinetochore-microtubule attachments, compromising faithful chromosome segregation and daughter-cell viability. Spindle-pole organization influences and is influenced by kinetochore activity, but the molecular nature behind this critical force balance is unknown. CLASPs are microtubule-, kinetochore- and centrosome-associated proteins whose functional perturbation leads to three main spindle abnormalities: monopolarity, short spindles and multipolarity. The first two reflect a role at the kinetochore-microtubule interface through interaction with specific kinetochore partners, but how CLASPs prevent spindle multipolarity remains unclear. Here we found that human CLASPs ensure spindle-pole integrity after bipolarization in response to CENP-E- and Kid-mediated forces from misaligned chromosomes. This function is independent of end-on kinetochore-microtubule attachments and involves the recruitment of ninein to residual pericentriolar satellites. Distinctively, multipolarity arising through this mechanism often persists through anaphase. We propose that CLASPs and ninein confer spindle-pole resistance to traction forces exerted during chromosome congression, thereby preventing irreversible spindle multipolarity and aneuploidy.  相似文献   
36.
DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23–19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil.  相似文献   
37.
BackgroundAntimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus.MethodsA physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations.ResultsRQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces.ConclusionsRQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application.General significanceThese results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.  相似文献   
38.
In retinopathy of prematurity (ROP), the abnormal retinal neovascularization is often accompanied by retinal neuronal dysfunction. Here, a rat model of oxygen-induced retinopathy (OIR), which mimics the ROP disease, was used to investigate changes in the expression of key mediators of autophagy and markers of cell death in the rat retina. In addition, rats were treated from birth to postnatal day 14 and 18 with 3-methyladenine (3-MA), an inhibitor of autophagy. Immunoblot and immunofluorescence analysis demonstrated that autophagic mechanisms are dysregulated in the retina of OIR rats and indicated a possible correlation between autophagy and necroptosis, but not apoptosis. We found that 3-MA acts predominantly by reducing autophagic and necroptotic markers in the OIR retinas, having no effects on apoptotic markers. However, 3-MA does not ameliorate retinal function, which results compromised in this model. Taken together, these results revealed the crucial role of autophagy in retinal cells of OIR rats. Thus, inhibiting autophagy may be viewed as a putative strategy to counteract ROP.  相似文献   
39.
We conducted a large‐scale phylogenetic and biogeographical inference of the Poliptila gnatcatchers and investigated the evolutionary history of two closely related neotropical bird species linked to open habitats, Polioptila dumicola and Polioptila plumbea. A Bayesian inference was employed based on the NADH subunit 2 gene to reconstruct the phylogenetic relationship of the gnatcatchers, and ancestral area reconstructions were estimated using BioGeoBEARS. For the phylogeographic analysis, we analyzed two mitochondrial genes, cytochrome b and ND2, of 102 individuals from P. dumicola and P. plumbea distributed throughout the complete range of both species. To reconstruct the dates related to the splitting events, we included a subset of sequences from the nuclear gene beta‐fibrinogen intron‐7. A striking result was the recovery of the sister relationship between the lineages of P. dumicola /plumbea and the paraphyly among the subspecies of P. plumbea: the first group was formed by P. dumicola, P. p. plumbea, P. p. parvirostris, P. p. atricapilla and P. lactea, occurring mainly on the Brazilian shield; while the second group consisted of lineages from north of the Amazon, west of the Andes, and Central America, and included P. maior, P. p. cinericia, P. p. bilineata and P. p. innotata. Significant phylogeographic structure was evident within lineages attributed to P. plumbea, with high levels of differentiation in the well‐defined clades according to all phylogenetic analyses. Our biogeographic analyses support distinct evolutionary histories related to founder events and vicariance, occurring during the late Pliocene and early Pleistocene. Several dispersal episodes between North/Central America and South America led to the establishment of populations which became differentiated due to landscape changes, such as the establishment of riverine barriers, the uplift of the Andes and the formation of the Panama Isthmus.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号