首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   18篇
  2023年   1篇
  2022年   1篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   15篇
  2015年   11篇
  2014年   11篇
  2013年   19篇
  2012年   19篇
  2011年   18篇
  2010年   13篇
  2009年   24篇
  2008年   22篇
  2007年   12篇
  2006年   19篇
  2005年   17篇
  2004年   12篇
  2003年   10篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1976年   1篇
排序方式: 共有263条查询结果,搜索用时 156 毫秒
91.
The solvent-tolerant strain Pseudomonas putida DOT-T1E was grown in batch fermentations in a 5-liter bioreactor in the presence and absence of 10% (vol/vol) of the organic solvent 1-decanol. The growth behavior and cellular energetics, such as the cellular ATP content and the energy charge, as well as the cell surface hydrophobicity and charge, were measured in cells growing in the presence and absence of 1-decanol. Although the cells growing in the presence of 1-decanol showed an about 10% reduced growth rate and a 48% reduced growth yield, no significant differences were measured either in the ATP and potassium contents or in the energy charge, indicating that the cells adapted completely at the levels of membrane permeability and energetics. Although the bacteria needed additional energy for adaptation to the presence of the solvent, they were able to maintain or activate electron transport phosphorylation, allowing homeostasis of the ATP level and energy charge in the presence of the solvent, at the price of a reduced growth yield. On the other hand, significantly enhanced cell hydrophobicities and more negative cell surface charges were observed in cells grown in the presence of 1-decanol. Both reactions occurred within about 10 min after the addition of the solvent and were significantly different after killing of the cells with toxic concentrations of HgCl2. This adaptation of the surface properties of the bacterium to the presence of solvents seems to be very similar to previously observed reactions on the level of lipopolysaccharides, with which bacteria adapt to environmental stresses, such as heat shock, antibiotics, or low oxygen content. The results give clear physiological indications that the process with P. putida DOT-T1E as the biocatalyst and 1-decanol as the solvent is a stable system for two-phase biotransformations that will allow the production of fine chemicals in economically sound amounts.  相似文献   
92.
Neurotransmitter signaling is essential for physiologic brain development. Sedative and anticonvulsant agents that reduce neuronal excitability via antagonism at N-methyl-D-aspartate receptors (NMDARs) and/or agonism at gamma-aminobutyric acid subtype A receptors (GABA(A)Rs) are applied frequently in obstetric and pediatric medicine. We demonstrated that a 1-day treatment of infant mice at postnatal day 6 (P6) with the NMDAR antagonist dizocilpine or the GABA(A)R agonist phenobarbital not only has acute but also long term effects on the cerebral cortex. Changes of the cerebral cortex proteome 1 day (P7), 1 week (P14), and 4 weeks (P35) following treatment at P6 suggest that a suppression of synaptic neurotransmission during brain development dysregulates proteins associated with apoptosis, oxidative stress, inflammation, cell proliferation, and neuronal circuit formation. These effects appear to be age-dependent as most protein changes did not occur in mice subjected to such pharmacological treatment in adulthood. Previously performed histological evaluations of the brains revealed widespread apoptosis and decreased cell proliferation following such a drug treatment in infancy and are thus consistent with brain protein changes reported in this study. Our results point toward several pathways modulated by a reduction of neuronal excitability that might interfere with critical developmental events and thus affirm concerns about the impact of NMDAR- and/or GABA(A)R-modulating drugs on human brain development.  相似文献   
93.
Encephalopsin, also called Panopsin, is a recently discovered extraretinal photoreceptor, which may play a role in non-visual photic processes such as the entrainment of circadian rhythm or the regulation of pineal melatonin production. Based on RT-PCR data and comparative genomic sequence analysis, we show that the human OPN3 gene consists of six exons and expresses various splice variants, while the murine homologue contains four exons and produces just one splice form. Furthermore, the human OPN3 gene overlaps with the neighboring KMO gene on a genomic as well as on an RNA level, whereas the corresponding genes in mouse lie close together but do not overlap. This finding is of particular interest, since differences in gene organization between man and mouse, that have been reported so far, occur within gene clusters, i.e. the number of genes within a certain cluster may differ between man and mouse. OPN3 provides an exception to this rule, since it is positionally uncoupled from other genes of the opsin family.  相似文献   
94.
The impact of interleukin (IL)-1ß on tumor necrosis factor α-induced adipose-related protein (TIARP)/six-transmembrane protein of prostate 2 (STAMP2) was determined in adipocytes. TIARP/STAMP2 mRNA synthesis was significantly stimulated by IL-1ß in a dose- and time-dependent fashion in 3T3-L1 adipocytes. Signaling studies suggested that janus kinase 2, nuclear factor κB, and p44/42 mitogen-activated protein kinase are involved in IL-1ß-induced TIARP/STAMP2 mRNA expression. Furthermore, IL-1ß, TNFα, and IL-6 showed synergistic stimulatory effects on TIARP/STAMP2 gene expression. Moreover, both TIARP/STAMP2 mRNA synthesis and protein expression were induced by IL-1ß in fully differentiated human mesenchymal stem cell-derived adipocytes (hMSC-Ad). Taken together, TIARP/STAMP2 is highly upregulated in 3T3-L1 cells and hMSC-Ad by IL-1ß and might, therefore, modulate proinflammatory and insulin resistance-inducing effects of IL-1ß.  相似文献   
95.
(S)-Hydroxymandelate synthase (Hms) is a nonheme Fe(II) dependent dioxygenase that catalyzes the oxidation of 4-hydroxyphenylpyruvate to (S)-4-hydroxymandelate by molecular oxygen. In this work, the substrate promiscuity of Hms is characterized in order to assess its potential for the biosynthesis of chiral α-hydroxy acids. Enzyme kinetic analyses, the characterization of product spectra, quantitative structure activity relationship (QSAR) analyses and in silico docking studies are used to characterize the impact of substrate properties on particular steps of catalysis. Hms is found to accept a range of α-oxo acids, whereby the presence of an aromatic substituent is crucial for efficient substrate turnover. A hydrophobic substrate binding pocket is identified as the likely determinant of substrate specificity. Upon introduction of a steric barrier, which is suspected to obstruct the accommodation of the aromatic ring in the hydrophobic pocket during the final hydroxylation step, the racemization of product is obtained. A steady state kinetic analysis reveals that the turnover number of Hms strongly correlates with substrate hydrophobicity. The analysis of product spectra demonstrates high regioselectivity of oxygenation and a strong coupling efficiency of C-C bond cleavage and subsequent hydroxylation for the tested substrates. Based on these findings the structural basis of enantioselectivity and enzymatic activity is discussed.  相似文献   
96.
97.
North-Rhine Westphalia is the center of the German and European steel production. Its steel industry is heavily based on the primary production route and emits up to 30 Mt CO2 annually. One possible and increasingly prominent alternative to reduce these emissions is the hydrogen-based direct reduction. While this technology allows for a near climate-neutral production of primary steel, it poses substantial impacts on regional energy and material flows. Hence, the aim of this paper is to quantify the alterations in energy and material flows over time via integrating top-down energy and material flow models with bottom-up process models. The resulting values of emissions, energy, and material flows are then used to develop prospective scenarios that depict the requirements and consequences of potential pathways toward a climate-neutral steel production by 2045. The outcomes show that decarbonizing the North Rhine-Westphalian steel industry leads to an additional demand for renewable energies of up to 52.5 TWh per year, which represents 10% of the current electricity production in Germany. As securing the green electricity demand is a large challenge, the study also analyzes the impact of a partial recourse to natural gas as a reducing agent in combination with other measures like carbon capture and utilization/storage. The results show that such a recourse would reduce the electricity demand to 36.8 TWh. Hence, the paper illustrates relevant implications of the different scenarios, which can be used by policymakers to develop more realistic and resilient strategies for reaching carbon neutrality.  相似文献   
98.
During both spontaneous and thyroid hormone (TH)-induced metamorphosis, the Rana catesbeiana tadpole undergoes postembryonic developmental changes in its liver which are necessary for its transition from an ammonotelic larva to a ureotelic adult. Although this transition ultimately results from marked increases in the activities and/or de novo synthesis of the urea cycle enzymes, the precise molecular means by which TH exerts this tissue-specific response are presently unknown. Recent reports, using RNA from whole Xenopus laevis tadpole homogenates and indirect means of measuring TH receptor (TR) mRNAs, suggest a correlation between the up-regulation of TR beta-mRNAs and the general morphological changes occurring during amphibian metamorphosis. To assess whether or not this same relationship exists in a TH-responsive tissue, such as liver, we isolated and characterized a cDNA clone containing the complete nucleotide sequence for a R. catesbeiana urea cycle enzyme, ornithine transcarbamylase (OTC), as well as a genomic clone containing a portion of the hormone-binding domain of a R. catesbeiana TR beta gene. Through use of these homologous sequences and a heterologous cDNA fragment encoding rat carbamyl phosphate synthetase (CPS), we directly determined the relative levels of the TR beta, OTC, and CPS mRNAs in liver from spontaneous and TH-induced tadpoles. Our results establish that TH affects an up-regulation of mRNAs for its own receptor prior to up-regulating CPS and OTC mRNAs. Moreover, results with cultured tadpole liver demonstrate that TH, in the absence of any other hormonal influence, can affect an up-regulation of both the TR beta and OTC mRNAs.  相似文献   
99.
100.
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号