首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   79篇
  2022年   1篇
  2021年   10篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   10篇
  2013年   17篇
  2012年   19篇
  2011年   14篇
  2010年   15篇
  2009年   10篇
  2008年   14篇
  2007年   19篇
  2006年   10篇
  2005年   21篇
  2004年   13篇
  2003年   11篇
  2002年   11篇
  2001年   10篇
  2000年   19篇
  1999年   18篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1976年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
  1949年   1篇
排序方式: 共有297条查询结果,搜索用时 187 毫秒
11.
Sexual identity is governed by sex chromosomes in plants and animals, and by mating type (MAT) loci in fungi. Comparative analysis of the MAT locus from a species cluster of the human fungal pathogen Cryptococcus revealed sequential evolutionary events that fashioned this large, highly unusual region. We hypothesize that MAT evolved via four main steps, beginning with acquisition of genes into two unlinked sex-determining regions, forming independent gene clusters that then fused via chromosomal translocation. A transitional tripolar intermediate state then converted to a bipolar system via gene conversion or recombination between the linked and unlinked sex-determining regions. MAT was subsequently subjected to intra- and interallelic gene conversion and inversions that suppress recombination. These events resemble those that shaped mammalian sex chromosomes, illustrating convergent evolution in sex-determining structures in the animal and fungal kingdoms.  相似文献   
12.
The evolutionarily conserved cyclic AMP (cAMP) signaling pathway controls cell functions in response to environmental cues in organisms as diverse as yeast and mammals. In the basidiomycetous human pathogenic fungus Cryptococcus neoformans, the cAMP pathway governs virulence and morphological differentiation. Here we identified and characterized adenylyl cyclase-associated protein, Aca1, which functions in parallel with the Galpha subunit Gpa1 to control the adenylyl cyclase (Cac1). Aca1 interacted with the C terminus of Cac1 in the yeast two-hybrid system. By molecular and genetic approaches, Aca1 was shown to play a critical role in mating by regulating cell fusion and filamentous growth in a cAMP-dependent manner. Aca1 also regulates melanin and capsule production via the Cac1-cAMP-protein kinase A pathway. Genetic epistasis studies support models in which Aca1 and Gpa1 are necessary and sufficient components that cooperate to activate adenylyl cyclase. Taken together, these studies further define the cAMP signaling cascade controlling virulence of this ubiquitous human fungal pathogen.  相似文献   
13.
Calcineurin is a Ca2+-calmodulin-regulated protein phosphatase that is the target of the immunosuppressive drugs cyclosporin A and FK506. Calcineurin is a heterodimer composed of a catalytic A and a regulatory B subunit. In previous studies, the calcineurin A homologue was identified and shown to be required for growth at 37 degrees C and hence for virulence of the pathogenic fungus Cryptococcus neoformans. Here, we identify the gene encoding the calcineurin B regulatory subunit and demonstrate that calcineurin B is also required for growth at elevated temperature and virulence. We show that the FKR1-1 mutation, which confers dominant FK506 resistance, results from a 6 bp duplication generating a two-amino-acid insertion in the latch region of calcineurin B. This mutation was found to reduce FKBP12-FK506 binding to calcineurin both in vivo and in vitro. Molecular modelling based on the FKBP12-FK506-calcineurin crystal structure illustrates how this mutation perturbs drug interactions with the phosphatase target. In summary, our studies reveal a central role for calcineurin B in virulence and antifungal drug action in the human fungal pathogen C. neoformans.  相似文献   
14.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   
15.
Redox status changes exert critical impacts on necrotic/apoptotic and normal cellular processes. We report here a widely expressed Ca2+-permeable cation channel, LTRPC2, activated by micromolar levels of H2O2 and agents that produce reactive oxygen/nitrogen species. This sensitivity of LTRPC2 to redox state modifiers was attributable to an agonistic binding of nicotinamide adenine dinucleotide (beta-NAD+) to the MutT motif. Arachidonic acid and Ca2+ were important positive regulators for LTRPC2. Heterologous LTRPC2 expression conferred susceptibility to death on HEK cells. Antisense oligonucleotide experiments revealed physiological involvement of "native" LTRPC2 in H2O2- and TNFalpha-induced Ca2+ influx and cell death. Thus, LTRPC2 represents an important intrinsic mechanism that mediates Ca2+ and Na+ overload in response to disturbance of redox state in cell death.  相似文献   
16.
17.
18.
Fox DS  Cox GM  Heitman J 《Eukaryotic cell》2003,2(5):1025-1035
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised patients. The Ca2+-calmodulin-activated protein phosphatase calcineurin is necessary for virulence of C. neoformans. Mutants lacking the calcineurin catalytic (Cna1) or regulatory (Cnb1) subunit fail to grow at elevated temperature and are defective in virulence and hyphal elongation. Here we isolated a multicopy suppressor gene, CTS1, which restores growth of a calcineurin mutant strain at 37°C. The CTS1 gene (for calcineurin temperature suppressor 1) encodes a protein containing a C2 domain and a leucine zipper motif that may function as an effector of calcineurin. The CTS1 gene was disrupted by homologous recombination, and cts1 mutants were viable but exhibited defects in cell separation, growth, mating, and haploid fruiting. In addition, cts1 mutants were inviable when calcineurin was mutated or inhibited. Taken together, these findings suggest that calcineurin and Cts1 function in parallel pathways that regulate growth, cell separation, and hyphal elongation.  相似文献   
19.
20.
Cryptococcus neoformans is an opportunistic fungal pathogen with a defined sexual cycle. The gene encoding a heterotrimeric G-protein beta subunit, GPB1, was cloned and disrupted. gpb1 mutant strains are sterile, indicating a role for this gene in mating. GPB1 plays an active role in mediating responses to pheromones in early mating steps (conjugation tube formation and cell fusion) and signals via a mitogen-activated protein (MAP) kinase cascade in both MATalpha and MATa cells. The functions of GPB1 are distinct from those of the Galpha protein GPA1, which functions in a nutrient-sensing cyclic AMP (cAMP) pathway required for mating, virulence factor induction, and virulence. gpb1 mutant strains are also defective in monokaryotic fruiting in response to nitrogen starvation. We show that MATa cells stimulate monokaryotic fruiting of MATalpha cells, possibly in response to mating pheromone, which may serve to disperse cells and spores to locate mating partners. In summary, the Gbeta subunit GPB1 and the Galpha subunit GPA1 function in distinct signaling pathways: one (GPB1) senses pheromones and regulates mating and haploid fruiting via a MAP kinase cascade, and the other (GPA1) senses nutrients and regulates mating, virulence factors, and pathogenicity via a cAMP cascade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号