首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3052篇
  免费   252篇
  3304篇
  2021年   22篇
  2020年   18篇
  2019年   20篇
  2018年   28篇
  2017年   29篇
  2016年   46篇
  2015年   70篇
  2014年   86篇
  2013年   125篇
  2012年   167篇
  2011年   150篇
  2010年   93篇
  2009年   85篇
  2008年   132篇
  2007年   135篇
  2006年   144篇
  2005年   132篇
  2004年   131篇
  2003年   145篇
  2002年   171篇
  2001年   50篇
  2000年   42篇
  1999年   45篇
  1998年   55篇
  1997年   50篇
  1996年   57篇
  1995年   51篇
  1994年   54篇
  1993年   39篇
  1992年   34篇
  1991年   31篇
  1990年   33篇
  1989年   33篇
  1988年   25篇
  1987年   28篇
  1986年   34篇
  1985年   35篇
  1984年   48篇
  1983年   35篇
  1982年   42篇
  1981年   42篇
  1980年   36篇
  1979年   20篇
  1978年   25篇
  1977年   23篇
  1976年   23篇
  1975年   21篇
  1974年   29篇
  1970年   22篇
  1968年   22篇
排序方式: 共有3304条查询结果,搜索用时 15 毫秒
81.
82.
The hemocyanin of the tiger shrimp, Penaeus monodon, was investigated with respect to stability and oxygen binding. While hexamers occur as a major component, dodecamers and traces of higher aggregates are also found. Both the hexamers and dodecamers were found to be extremely stable against dissociation at high pH, independently of the presence of calcium ions, in contrast to the known crustacean hemocyanins. This could be caused by only a few additional noncovalent interactions between amino acids located at the subunit-subunit interfaces. Based on X-ray structures and sequence alignments of related hemocyanins, the particular amino acids are identified. At all pH values, the p50 and Bohr coefficients of the hexamers are twice as high as those of dodecamers. While the oxygen binding of hexamers from crustaceans can normally be described by a simple two-state model, an additional conformational state is needed to describe the oxygen-binding behaviour of Penaeus monodon hemocyanin within the pH range of 7.0 to 8.5. The dodecamers bind oxygen according to the nested Monod-Whyman-Changeaux (MWC) model, as observed for the same aggregation states of other hemocyanins. The oxygen-binding properties of both the hexameric and dodecameric hemocyanins guarantee an efficient supply of the animal with oxygen, with respect to the ratio between their concentrations. It seems that under normoxic conditions, hexamers play the major role. Under hypoxic conditions, the hexamers are expected not to be completely loaded with oxygen. Here, the dodecamers are supposed to be responsible for the oxygen supply.  相似文献   
83.
The impact of a specific region of the envelope protein E of tick-borne encephalitis (TBE) virus on the biology of this virus was investigated by a site-directed mutagenesis approach. The four amino acid residues that were analyzed in detail (E308 to E311) are located on the upper-lateral surface of domain III according to the X-ray structure of the TBE virus protein E and are part of an area that is considered to be a potential receptor binding determinant of flaviviruses. Mutants containing single amino acid substitutions, as well as combinations of mutations, were constructed and analyzed for their virulence in mice, growth properties in cultured cells, and genetic stability. The most significant attenuation in mice was achieved by mutagenesis of threonine 310. Combining this mutation with deletion mutations in the 3'-noncoding region yielded mutants that were highly attenuated. The biological effects of mutation Thr 310 to Lys, however, could be reversed to a large degree by a mutation at a neighboring position (Lys 311 to Glu) that arose spontaneously during infection of a mouse. Mutagenesis of the other positions provided evidence for the functional importance of residue 308 (Asp) and its charge interaction with residue 311 (Lys), whereas residue 309 could be altered or even deleted without any notable consequences. Deletion of residue 309 was accompanied by a spontaneous second-site mutation (Phe to Tyr) at position 332, which in the three-dimensional structure of protein E is spatially close to residue 309. The information obtained in this study is relevant for the development of specific attenuated flavivirus strains that may serve as future live vaccines.  相似文献   
84.
Summary Transepithelial current fluctuations were recorded inNecturus gallbladder, clamped at negative as well as positive potentials up to 64 mV. With NaCl-Ringer's (+10mm TAP) on both sides a mucosa-negative potential enhanced the relaxation noise component, present at zero potential, and produced peaking in the power spectrum at potentials above –36mV. Concomitantly at these potentials an inductive as well as a capacitive low-frequency feature appeared in the impedance locus. Clamping at positive potentials of 18 mV suppressed the relaxation noise component. At potentials above 51mV the spectral values increased predominantly at low frequencies. In this case the power spectrum showed only a 1/f noise component. The experiments confirm the previous finding that a K+ efflux through fluctuating apical K+ channels exists under normal conditions. With serosal KCl-Ringer's the initial Lorentzian component was enhanced at negative but suppressed at positive potentials. The increase at negative potentials was less pronounced than in experiments with NaCl-Ringer's on both sides, indicating saturation of the fluctuating K+ current component. With mucosal KCl-Ringer's a negative potential depressed the initial relaxation noise component, whereas it was enhanced at +18 mV clamp potential. In the latter case an additional Lorentzian component became apparent at higher frequencies. At potentials of 36 mV and above the low-frequency Lorentzian disappeared whereas the corner frequency of the high-frequency component increased. The latter experiments demonstrate that the relaxation noise component inNecturus gallbladder consists of two superimposed Lorentzians. As the relaxation times of these two components behave differently under an electrical field, there may exist two different types of K+ channels. It is demonstrated that peaking in the plateau of power spectra can be explained by frequency-dependent attenuation effects, caused by a polarization impedance.  相似文献   
85.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   
86.
Summary A 3D triple resonance experiment has been designed to provide intraresidual and sequential correlations between amide nitrogens and -carbons in uniformly 13C15N-labeled proteins. In-phase 13C magnetization is transferred to the aliphatic side-chain protons via the side-chain carbons using a CC-TOCSY mixing sequence. Thus, the experiment alleviates the resonance assignment process by providing information about the amino acid type as well as establishing sequential connectivities. Leaving the carbonyl spins untouched throughout the transfer from 13C to 1H leads to E.COSY-type cross peaks, from which the 3JH co coupling constants can be evaluated. The pulse sequence is applied to oxidized Desulfovibrio vulgaris flavodoxin.  相似文献   
87.
Various digestive and enteroendocrine signaling processes are constantly being adapted to the chemical composition and quantity of the chyme contained in the diverse compartments of the gastrointestinal tract. The chemosensory monitoring that underlies the adaptive capacity of the gut is thought to be performed by so-called brush cells that share morphological and molecular features with gustatory sensory cells. A substantial population of brush cells is localized in the gastric mucosa. However, no chemosensory receptors have been found to be expressed in these cells so far, challenging the concept that they serve a chemosensory function. The canonical chemoreceptors for the detection of macronutrients are taste receptors belonging to the T1R family; these have been identified in several tissues in addition to the gustatory system including the small intestine. We demonstrate the expression of the T1R subtype T1R3, which is essential for the detection of both sugars and amino acids in the gustatory system, in two distinct cell populations of the gastric mucosa. One population corresponds to open-type brush cells, emphasizing the notion that they are a chemosensory cell type; T1R3 immunoreactivity in these cells is restricted to the apical cell pole, which might provide the basis for the detection of luminal macronutrient compounds. The second gastric T1R3-positive population consists of closed-type endocrine cells that produce ghrelin. This finding suggests that ghrelin-releasing cells, which lack access to the stomach lumen, might receive chemosensory input from macronutrients in the circulation via T1R3.  相似文献   
88.
89.

Background and aims

Litter decomposition is regulated by e.g. substrate quality and environmental factors, particularly water availability. The partitioning of nutrients released from litter between vegetation and soil microorganisms may, therefore, be affected by changing climate. This study aimed to elucidate the impact of litter type and drought on the fate of litter-derived N in beech seedlings and soil microbes.

Methods

We quantified 15N recovery rates in plant and soil N pools by adding 15N-labelled leaf and/or root litter under controlled conditions.

Results

Root litter was favoured over leaf litter for N acquisition by beech seedlings and soil microorganisms. Drought reduced 15N recovery from litter in seedlings thereby affecting root N nutrition. 15N accumulated in seedlings in different sinks depending on litter type.

Conclusions

Root turnover appears to influence (a) N availability in the soil for plants and soil microbes and (b) N acquisition and retention despite a presumably extremely dynamic turnover of microbial biomass. Compared to soil microorganisms, beech seedlings represent a very minor short-term N sink, despite a potentially high N residence time. Furthermore, soil microbes constitute a significant N pool that can be released in the long term and, thus, may become available for N nutrition of plants.  相似文献   
90.
MspA is the prototype of a new family of tetrameric porins and provides the main general diffusion pathway for hydrophilic compounds through the outer membrane of Mycobacterium smegmatis. Structural analysis was hampered by the scarce amount of pure protein. After replacement of the GC-rich codons of the mspA gene by codons optimal for high-level expression in Escherichia coli, the mature MspA protein was overproduced in E. coli. The recombinant MspA (rMspA) monomer (M(r) 20000) was purified by anion exchange and hydrophobic interaction chromatography yielding 2.6 mg pure protein per liter of culture. This exceeded the yield of the native protein 10-fold. Circular dichroism revealed that rMspA is folded in a native-like structure. rMspA assembled partially to the channel-forming tetramer both during expression in E. coli and after purification in vitro. Thus, overexpression in E. coli and chromatographic purification are key steps towards a high resolution structure of MspA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号