首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3130篇
  免费   269篇
  2021年   23篇
  2020年   18篇
  2019年   20篇
  2018年   28篇
  2017年   29篇
  2016年   46篇
  2015年   70篇
  2014年   91篇
  2013年   133篇
  2012年   173篇
  2011年   155篇
  2010年   95篇
  2009年   88篇
  2008年   139篇
  2007年   137篇
  2006年   145篇
  2005年   135篇
  2004年   139篇
  2003年   148篇
  2002年   173篇
  2001年   53篇
  2000年   50篇
  1999年   47篇
  1998年   55篇
  1997年   50篇
  1996年   58篇
  1995年   51篇
  1994年   56篇
  1993年   41篇
  1992年   36篇
  1991年   35篇
  1990年   34篇
  1989年   35篇
  1988年   27篇
  1987年   28篇
  1986年   34篇
  1985年   35篇
  1984年   48篇
  1983年   36篇
  1982年   42篇
  1981年   42篇
  1980年   36篇
  1979年   20篇
  1978年   25篇
  1977年   23篇
  1976年   24篇
  1975年   21篇
  1974年   31篇
  1970年   23篇
  1968年   22篇
排序方式: 共有3399条查询结果,搜索用时 337 毫秒
951.
952.
Otoliths in bony fishes and otoconia in mammals are composite crystals consisting of calcium carbonate and proteins. These biominerals are part of the gravity and linear acceleration detection system of the inner ear. Mutations in otopetrin 1 have been shown to result in lack of otoconia in tilted and mergulhador mutant mice. The molecular function of Otopetrin 1, a novel protein that contains ten predicted transmembrane domains, however, has remained elusive. Here we show that a mutation in the orthologous gene in zebrafish is responsible for the complete absence of otoliths in backstroke mutants. We examined the localization of Starmaker, a secreted protein that is highly abundant in otoliths in backstroke mutants. Starmaker protein accumulated within cells of the otic epithelium, indicating a possible defect in secretion. Our data suggest that Otopetrin 1 in zebrafish may be involved in the protein trafficking of components required for formation of biominerals in the ear.  相似文献   
953.
Electron microscopy of isolated cell walls of the ancient bacterium Thermus thermophilus revealed that most of the peptidoglycan (PG) surface, apart from the septal region, was shielded against specific alphaPG antibodies. On the other hand, an antiserum raised against S-layer-attached cell wall fragments (alphaSAC) bound to most of the surface except for the septal regions. Treatments with alpha-amylase and pronase E made the entire cell wall surface uniformly accessible to alphaPG and severely decreased the binding of alphaSAC. We concluded that a layer of strongly bound secondary cell wall polymers (SCWPs) covers most of the cell wall surface in this ancient bacterium. A preliminary analysis revealed that such SCWPs constitute 14% of the cell wall and are essentially composed of sugars. Enzyme treatments of the cell walls revealed that SCWP was required in vitro for the binding of the S-layer protein through the S-layer homology (SLH) motif. The csaB gene was necessary for the attachment of the S-layer-outer membrane (OM) complex to the cell wall in growing cells of T. thermophilus. In vitro experiments confirmed that cell walls from a csaB mutant bound to the S-layer with a much lower affinity ( approximately 1/10) than that of the wild type. CsaB was found to be required for pyruvylation of components of the SCWP and for immunodetection with alpha-SAC antiserum. Therefore, the S-layer-OM complex of T. thermophilus binds to the cell wall through the SLH motif of the S-layer protein via a strong interaction with a highly immunogenic pyruvylated component of the SCWP. Immuno-cross-reactive compounds were detected with alphaSAC on cell walls of other Thermus spp. and in the phylogenetically related microorganism Deinococcus radiodurans. These results imply that the interaction between the SLH motif and pyruvylated components of the cell wall arose early during bacterial evolution as an ancestral mechanism for anchoring proteins and outer membranes to the cell walls of primitive bacteria.  相似文献   
954.
We describe herein the design, syntheses and evaluation of a number of bicycloproline P2 bearing HCV protease inhibitors endowed with impressive enzyme potency, enzyme selectivity, cellular activity and favorable ADME profiles.  相似文献   
955.
956.
In order to find correlations between skin gland morphology and specific ethological features, the cutaneous glands of the foot pads of the primitive mammal the Madagascan tenrec, Echinops telfairi, were studied by histological and various histochemical methods as well as by electron microscopy. In the foot pads specific eccrine skin glands occurred consisting of coiled ducts and tubular secretory portions, the lumina of which were considerably wider than in primate sweat glands. The secretory tubules were composed of branched myoepithelial cells and glandular cells. The latter contained abundant mitochondria, large amounts of glycogen particles and few secretory granules as well as individual heterolysosomes and myelin bodies. The lateral cell membrane was marked by extensive interdigitations. The apical membranes of all glandular cells contained proteoglycans with sulfated and carboxylated groups containing N-acetyl-glucosamine, N-acetyl-galactosamine, galactose and mannose. The expression pattern of cytokeratins of the glandular epithelium was variable and showed similarities to that of the human eccrine glands. Tubulin, vinculin and actin were expressed in the glandular epithelium. The secretory cells showed positive reactions with antibodies against antimicrobial peptides and IgA. A positive reaction was observed with antibodies against the androgen receptor. The PCNA and TUNEL reactions indicated that the tubular skin glands of Echinops are made up of a slowly renewing tissue. We conclude that the glands fulfill several functions: production of a fluid-rich secretory product, which may prevent slipping of the foot pads on the substrate during running or climbing, secretion of antimicrobial peptides and proteins, and playing a role in thermoregulation.We thank the Fendt Foundation for financial support  相似文献   
957.
Surface-decoration of microtubules by human tau   总被引:1,自引:0,他引:1  
Tau is a neuronal, microtubule-associated protein that stabilizes microtubules and promotes neurite outgrowth. Tau is largely unfolded in solution and presumably forms mostly random coil. Because of its hydrophilic nature and flexible structure, tau complexed to microtubules is largely invisible by standard electron microscopy methods. We applied a combination of high-resolution metal-shadowing and cryo-electron microscopy to study the interactions between tau and microtubules. We used recombinant tau variants with different domain compositions, (1) full length tau, (2) the repeat domain that mediates microtubule binding (K19), and (3) two GFP-tau fusion proteins that contain a globular marker (GFP) attached to full-length tau at either end. All of these constructs bind exclusively to the outside of microtubules. Most of the tau-related mass appears randomly distributed, creating a "halo" of low-density mass spread across the microtubule surface. Only a small fraction of tau creates a periodic signal at an 8 nm interval, centered on alpha-tubulin subunits. Our data suggest that tau retains most of its disordered structure even when bound to the microtubule surface. Hence, it binds along, as well as across protofilaments. Nevertheless, even minute concentrations of tau have a strong stabilizing effect and effectively scavenge unpolymerized tubulin.  相似文献   
958.
The efficiency of serotonergic signal transduction is controlled by the density of serotonegic synapses and by the activity of the serotonin transporter (SERT), which selectively clears the synaptic cleft of the neurotransmitter. SERT is located in axons, where it is concentrated in varicosities and terminal boutons and thus is an exquisite marker for serotonergic synapses. This finding has been taken advantage of for neuroimaging serotonergic synaptic contact sites. Previous positron emission tomography (PET) and single photon emission computed tomography (SPECT) studies were often carried out using radioligands that bind with high affinity to SERTs in the brainstem but also exhibit high affinity for dopamine and norepinephrine transporters and therefore did not allow quantification of serotonergic innervations in brain regions also containing dopaminergic or noradrenergic terminals. In order to visualize SERT availability more selectively, in recent years new tracers have been developed, one of which is [11C]DASB (N,N-dimethyl-2-2-amino-4-cyanophenylthiobenzylamine). Here, we have performed a detailed pharmacological characterization of unlabelled as well as radioactive DASB on recombinant human monoamine transporter proteins. Our results show that DASB selectively binds to SERT with high affinity (KD = 3.5 nm) to a site distinct from the serotonin (5-HT) recognition/translocation site. 5-HT inhibits DASB binding to SERT with more than one order of magnitude lower affinity than that of DASB binding (IC50 = 82.4 nm). These findings suggest DASB to be a highly selective PET tracer to visualize the density of serotonergic synapses in human brain.  相似文献   
959.
We established a plasmid-based system for generating infectious Ebola virus-like particles (VLPs), which contain an Ebola virus-like minigenome consisting of a negative-sense copy of the green fluorescent protein gene. This system produced nearly 10(3) infectious particles per ml of supernatant, equivalent to the titer of Ebola virus generated by a reverse genetics system. Interestingly, infectious Ebola VLPs were generated, even without expression of VP24. Transmission and scanning electron microscopic analyses showed that the morphology of the Ebola VLPs was indistinguishable from that of authentic Ebola virus. Thus, this system allows us to study Ebola virus entry, replication, and assembly without biosafety level 4 containment. Furthermore, it may be useful in vaccine production against this highly pathogenic agent.  相似文献   
960.
Flaviviruses have a spherical capsid that is composed of multiple copies of a single capsid protein and, in contrast to the viral envelope, apparently does not have an icosahedral structure. So far, attempts to isolate distinct particulate capsids and soluble forms of the capsid protein from purified virions as well as to assemble capsid-like particles in vitro have been largely unsuccessful. Here we describe the isolation of nucleocapsids from tick-borne encephalitis (TBE) virus and their disintegration into a capsid protein dimer by high-salt treatment. Purified capsid protein dimers could be assembled in vitro into capsid-like particles when combined with in vitro transcribed viral RNA. Particulate structures could also be obtained when single-stranded DNA oligonucleotides were used. These data suggest that the dimeric capsid protein functions as a basic building block in the assembly process of flaviviruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号