首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3866篇
  免费   365篇
  4231篇
  2021年   33篇
  2020年   26篇
  2019年   29篇
  2018年   32篇
  2017年   35篇
  2016年   64篇
  2015年   95篇
  2014年   120篇
  2013年   157篇
  2012年   214篇
  2011年   188篇
  2010年   123篇
  2009年   109篇
  2008年   187篇
  2007年   182篇
  2006年   189篇
  2005年   190篇
  2004年   174篇
  2003年   205篇
  2002年   227篇
  2001年   64篇
  2000年   48篇
  1999年   58篇
  1998年   70篇
  1997年   64篇
  1996年   67篇
  1995年   59篇
  1994年   66篇
  1993年   51篇
  1992年   46篇
  1991年   41篇
  1990年   37篇
  1989年   38篇
  1988年   31篇
  1987年   39篇
  1986年   43篇
  1985年   39篇
  1984年   55篇
  1983年   41篇
  1982年   50篇
  1981年   58篇
  1980年   41篇
  1979年   22篇
  1978年   30篇
  1977年   29篇
  1976年   24篇
  1975年   22篇
  1974年   33篇
  1970年   26篇
  1968年   27篇
排序方式: 共有4231条查询结果,搜索用时 0 毫秒
51.
We applied a 15N dilution technique called “Integrated Total Nitrogen Input” (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot−1) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot−1. Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha−1 yr−1. Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5–10 kg N ha−1 yr−1.  相似文献   
52.
Ath6 is a novel quantitative trait locus associated with differences in susceptibility to atherosclerosis between C57BL/6J (B6) and C57BLKS/J (BKS) inbred mouse strains. Combining data from an intercross and a backcross (1593 meioses) between mice from B6 and BKS strains and from The Jackson Laboratory interspecific backcross panels, (C57BL/6J ×Mus spretus) F1× C57BL/6J and (C57BL/6J × SPRET/Ei) F1× SPRET/Ei, we constructed a consensus genetic map and narrowed Ath6 to a 1.07 ± 0.26 cM interval between the anonymous DNA marker D12Pgn4 and the gene Nmyc1. This region is near the proximal end of murine Chromosome (Chr) 12, which is homologous to the human chromosomal region 2p24-p25. Marker order in the Ath6 region was concordant among the two crosses and The Jackson Laboratory interspecific backcross panels. This high resolution map rules out candidate genes encoding apolipoprotein B, syndecan 1, and Adam17. The two Ath6 crosses have a combined potential resolution of 0.06 cM. Received: 12 September 2000 / Accepted: 22 February 2001  相似文献   
53.
Shades ranging from violet to black pigmentation in pepper (Capsicum annuum L.) are attributed to anthocyanin accumulation. High-performance liquid chromatography and mass spectrometry analysis of violet and black fruit tissue identified a single anthocyanin that was determined to be delphinidin-3-p-coumaroyl-rutinoside-5-glucoside. Leaf tissue of a black-pigmented foliage genotype contained the same anthocyanin found in fruit but at a considerably higher concentration in comparison to violet and black fruit tissue. Fruit chlorophyll concentration was approximately 14-fold higher in black fruit in comparison to violet fruit that contained relatively little chlorophyll. Beta-carotene, lutein, violaxanthin, and neoxanthin carotenoid concentrations in black fruit were also significantly greater in comparison to violet fruit. High concentrations of delphinidin in combination with chlorophyll and accessory carotenoid pigments produced the characteristic black pigmentation observed in fruits and leaves of selected genotypes. Anthocyanins were accumulated in the outer mesocarp of violet and black fruit and in the palisade and mesophyll cells of black leaves. Consistent with chlorophyll content of respective genotypes, chloroplast density was greater in cells of black fruits. Utilizing Capsicum pigment variants, we determine the biochemical factors responsible for violet versus black-pigmented pepper tissue in the context of described pepper color genes.  相似文献   
54.
55.
We have studied the stability and reassociation behaviour of native molecules of Rapana venosa hemocyanin and its two subunits, termed RvH1 and RvH2. In the presence of different concentrations of Ca(2+) and Mg(2+) ions and pH values, the subunits differ not only in their reassociation behaviour, but also in their formation of helical tubules and multidecamers. RvH1 revealed a greater stability at higher pH values compared to RvH2. Overall, the stability of reassociated RvH and its structural subunits was found to be pH-dependent. The increasing stability of native Hc and its subunits, shown by pH-induced CD transitions (acid and alkaline denaturation), can be explained with the formation of quaternary structure. The absence of a Cotton effect at temperatures 20-40 degrees C in the pH-transition curves of RvH2 indicates that this subunit is stabilized by additional "factors", e.g.: non-ionic/hydrophobic stabilization and interactions of carbohydrate moieties. A similar behaviour was observed for the T-transition curves in a wide pH interval for RvH and its structural subunits. At higher temperatures, many of the secondary structural elements are preserved especially at neutral pH, even at extreme high temperatures above 90 degrees C the protein structures resemble a "globule state".  相似文献   
56.
57.
Until 2019, the human genome was available in only one fully annotated version, GRCh38, which was the result of 18 years of continuous improvement and revision. Despite dramatic improvements in sequencing technology, no other genome was available as an annotated reference until 2019, when the genome of an Ashkenazi individual, Ash1, was released. In this study, we describe the assembly and annotation of a second individual genome, from a Puerto Rican individual whose DNA was collected as part of the Human Pangenome project. The new genome, called PR1, is the first true reference genome created from an individual of African descent. Due to recent improvements in both sequencing and assembly technology, and particularly to the use of the recently completed CHM13 human genome as a guide to assembly, PR1 is more complete and more contiguous than either GRCh38 or Ash1. Annotation revealed 37,755 genes (of which 19,999 are protein coding), including 12 additional gene copies that are present in PR1 and missing from CHM13. Fifty-seven genes have fewer copies in PR1 than in CHM13, 9 map only partially, and 3 genes (all noncoding) from CHM13 are entirely missing from PR1.  相似文献   
58.
Genomic hypomethylation is a consistent finding in both human and animal tumors and mounting experimental evidence suggests a key role for epigenetic events in tumorigenesis. Furthermore, it has been suggested that early changes in DNA methylation and histone modifications may serve as sensitive predictive markers in animal testing for carcinogenic potency of environmental agents. Alterations in metabolism of methyl donors, disturbances in activity and/or expression of DNA methyltransferases, and presence of DNA single-strand breaks could contribute to the loss of cytosine methylation during carcinogenesis; however, the precise mechanisms of genomic hypomethylation induced by chemical carcinogens remain largely unknown. This study examined the mechanism of DNA hypomethylation during hepatocarcinogenesis induced by peroxisome proliferators WY-14,643 (4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid) and DEHP (di-(2-ethylhexyl)phthalate), agents acting through non-genotoxic mode of action. In the liver of male Fisher 344 rats exposed to WY-14,643 (0.1% (w/w), 5 months), the level of genomic hypomethylation increased by approximately 2-fold, as compared to age-matched controls, while in the DEHP group (1.2% (w/w), 5 months) DNA methylation did not change. Global DNA hypomethylation in livers from WY-14,643 group was accompanied by the accumulation of DNA single-strand breaks, increased cell proliferation, and diminished expression of DNA methyltransferase 1, while the metabolism of methyl donors was not affected. In contrast, none of these parameters changed significantly in rats fed DEHP. Since WY-14,643 is much more potent carcinogen than DEHP, we conclude that the extent of loss of DNA methylation may be related to the carcinogenic potential of the chemical agent, and that accumulation of DNA single-strand breaks coupled to the increase in cell proliferation and altered DNA methyltransferase expression may explain genomic hypomethylation during peroxisome proliferator-induced carcinogenesis.  相似文献   
59.
Antioxidant protein 2 (AOP2) is a member of a family of thiol-specific antioxidants, recently renamed peroxiredoxins, that evolved as part of an elaborate system to counteract and control detrimental effects of oxygen radicals. AOP2 is found in endothelial cells, erythrocytes, monocytes, T and B cells, but not in granulocytes. AOP2 was found solely in the cytoplasm and was not associated with the nuclear or membrane fractions; neither was it detectable in plasma. Further experiments focused on the function of AOP2 in erythrocytes where it is closely associated with the hemoglobin complex, particularly with the heme. An investigation of the mechanism of this interaction demonstrated that the conserved cysteine-47 in AOP2 seems to play a role in AOP2-heme interactions. Recombinant AOP2 prevented induced as well as noninduced methemoglobin formation in erythrocyte hemolysates, indicating its antioxidant properties. We conclude that AOP2 is part of a sophisticated system developed to protect and support erythrocytes in their many physiological functions.  相似文献   
60.
Allyl isothiocyanate (AITC) is a dietary component with possible anticancer effects, though much information about AITC and cancer has been obtained from cell studies. To investigate the effect of AITC on DNA integrity in vivo, a crossover study was conducted. Adults (n= 46) consumed AITC, AITC-rich vegetables [mustard and cabbage (M/C)] or a control treatment with a controlled diet for 10 days each. On day 11, volunteers provided blood and urine before and after consuming treatments. Volunteers were characterized for genotype for GSTM1 and GSTT1 (glutathione S-transferases) and XPD (DNA repair). DNA integrity in peripheral blood mononuclear cells was assessed by single-cell gel electrophoresis. Urine was analyzed for 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and creatinine. Ten-day intake of neither AITC nor M/C resulted in statistically significant differences in DNA strand breaks [least squares mean (LSmean) % DNA in tail±S.E.M.: 4.8±0.6 for control, 5.7±0.7 for AITC, 5.3±0.6 for M/C] or urinary 8-oxodG (LSmean μg 8-oxodG/g creatinine±S.E.M.: 2.95±0.09 for control, 2.88±0.09 for AITC, 3.06±0.09 for M/C). Both AITC and M/C increased DNA strand breaks 3 h postconsumption (LSmean % DNA in tail±S.E.M.: 3.2±0.7 for control, 8.3±1.7 for AITC, 8.0±1.7 for M/C), and this difference disappeared at 6 h (4.2±0.9 for control, 5.7±1.2 for AITC, 5.5±1.2 for M/C). Genotypes for GSTM1, GSTT1 and XPD were not associated with treatment effects. In summary, DNA damage appeared to be induced in the short term by AITC and AITC-rich products, but that damage disappeared quickly, and neither AITC nor AITC-rich products affected DNA base excision repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号