首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2390篇
  免费   146篇
  国内免费   1篇
  2021年   16篇
  2019年   14篇
  2018年   20篇
  2017年   27篇
  2016年   39篇
  2015年   58篇
  2014年   75篇
  2013年   91篇
  2012年   120篇
  2011年   128篇
  2010年   81篇
  2009年   64篇
  2008年   96篇
  2007年   100篇
  2006年   103篇
  2005年   103篇
  2004年   82篇
  2003年   93篇
  2002年   74篇
  2001年   44篇
  2000年   50篇
  1999年   46篇
  1998年   43篇
  1997年   40篇
  1995年   25篇
  1994年   29篇
  1993年   27篇
  1992年   33篇
  1991年   32篇
  1990年   18篇
  1989年   23篇
  1988年   37篇
  1987年   22篇
  1986年   22篇
  1985年   24篇
  1984年   21篇
  1983年   22篇
  1982年   23篇
  1981年   22篇
  1980年   15篇
  1979年   19篇
  1977年   21篇
  1976年   14篇
  1975年   13篇
  1974年   29篇
  1972年   12篇
  1971年   15篇
  1969年   17篇
  1936年   12篇
  1872年   12篇
排序方式: 共有2537条查询结果,搜索用时 750 毫秒
101.
Lignocellulose is an abundant and renewable feedstock for the production of such commodities as fuels and chemicals, provided that a low-cost technology can be developed to overcome its recalcitrance. Organisms that hydrolyze the sugar polymers in lignocellulose to produce a valuable product at a high rate would significantly reduce the costs of current conversion technologies. To develop yeasts, such as Saccharomyces cerevisiae, for such consolidated bioprocessing (CBP), a secreted heterologous cellulolytic enzyme system must be engineered into it. While considerable progress has been made in this regard, the secretion of cellobiohydrolases (CBHs) at levels required for crystalline cellulose hydrolysis has remained elusive until recently. Recent results suggest the existence of a compatibility factor for the expression of foreign genes in a host and that expression of some genes or their products exerted varying degrees of stress on the cell. The secretion machinery of yeasts is a multi-step process and each step is directed and regulated by several proteins, providing a vast array of targets that can be manipulated to enhance heterologous protein secretion. This review assesses the current state of the field with respect to CBH secretion in yeast and the options for enhancing yeast secretion capacity through strain engineering.  相似文献   
102.
Amyloid- (A) oligomers play a crucial role in Alzheimer’s disease due to their neurotoxic aggregation properties. Fibrillar A oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel -sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A monomers. From that, we propose the following growth mechanism from A oligomers to fibrils: (1) elongation of short protofilaments; (2) breakage of large protofilaments; (3) formation of short protofilament pairs; and (4) elongation of protofilament pairs.  相似文献   
103.
In acute ischemic stroke, time from symptom onset to intervention is a decisive prognostic factor. In order to reduce this time, prehospital thrombolysis at the emergency site would be preferable. However, apart from neurological expertise and laboratory investigations a computed tomography (CT) scan is necessary to exclude hemorrhagic stroke prior to thrombolysis. Therefore, a specialized ambulance equipped with a CT scanner and point-of-care laboratory was designed and constructed. Further, a new stroke identifying interview algorithm was developed and implemented in the Berlin emergency medical services. Since February 2011 the identification of suspected stroke in the dispatch center of the Berlin Fire Brigade prompts the deployment of this ambulance, a stroke emergency mobile (STEMO). On arrival, a neurologist, experienced in stroke care and with additional training in emergency medicine, takes a neurological examination. If stroke is suspected a CT scan excludes intracranial hemorrhage. The CT-scans are telemetrically transmitted to the neuroradiologist on-call. If coagulation status of the patient is normal and patient''s medical history reveals no contraindication, prehospital thrombolysis is applied according to current guidelines (intravenous recombinant tissue plasminogen activator, iv rtPA, alteplase, Actilyse).Thereafter patients are transported to the nearest hospital with a certified stroke unit for further treatment and assessment of strokeaetiology. After a pilot-phase, weeks were randomized into blocks either with or without STEMO care. Primary end-point of this study is time from alarm to the initiation of thrombolysis. We hypothesized that alarm-to-treatment time can be reduced by at least 20 min compared to regular care.  相似文献   
104.
Docking represents a versatile and powerful method to predict the geometry of protein–protein complexes. However, despite significant methodical advances, the identification of good docking solutions among a large number of false solutions still remains a difficult task. We have previously demonstrated that the formalism of mutual information (MI) from information theory can be adapted to protein docking, and we have now extended this approach to enhance its robustness and applicability. A large dataset consisting of 22,934 docking decoys derived from 203 different protein–protein complexes was used for an MI-based optimization of reduced amino acid alphabets representing the protein–protein interfaces. This optimization relied on a clustering analysis that allows one to estimate the mutual information of whole amino acid alphabets by considering all structural features simultaneously, rather than by treating them individually. This clustering approach is fast and can be applied in a similar fashion to the generation of reduced alphabets for other biological problems like fold recognition, sequence data mining, or secondary structure prediction. The reduced alphabets derived from the present work were converted into a scoring function for the evaluation of docking solutions, which is available for public use via the web service score-MI: http://score-MI.biochem.uni-erlangen.de  相似文献   
105.
Thymosin β4 is the prototype of β-thymosins and is present in almost every mammalian cell. It is regarded to be the main intracellular G-actin sequestering peptide. Thymosin β4 serves as a specific glutaminyl substrate for guinea pig transglutaminase. In the absence of an appropriate additional aminyl donor an ε-amino group of thymosin β4 serves also as an aminyl substrate and an intramolecular bond is formed concomitantly NH3 (17 Da) is lost. The molecular mass of the product is 4,949.6 Da. This is 16.3 Da less than the molecular mass of thymosin β4 (4,965.9 Da). Digestion with endopeptidases and Edman degradation of the fragments identified the exact position of the ring forming isopeptide bond. In spite of 3 glutaminyl and 9 lysyl residues of thymosin β4 only one isopeptide bond between Lys16 and Gln36 was formed (cyclic thymosin β4). These two amino acid residues are conserved in all β-thymosins. Cyclic thymosin β4 still forms a complex with G-actin albeit the stability of the complex is about one fiftieth of the stability of the thymosin β× G-actin complex.  相似文献   
106.

Objective

Mortality in heart failure (AHF) remains high, especially during the first days of hospitalization. New prognostic biomarkers may help to optimize treatment. The aim of the study was to determine metabolites that have a high prognostic value.

Methods

We conducted a prospective study on a training cohort of AHF patients (n = 126) admitted in the cardiac intensive care unit and assessed survival at 30 days. Venous plasmas collected at admission were used for 1H NMRbased metabonomics analysis. Differences between plasma metabolite profiles allow determination of discriminating metabolites. A cohort of AHF patients was subsequently constituted (n = 74) to validate the findings.

Results

Lactate and cholesterol were the major discriminating metabolites predicting 30-day mortality. Mortality was increased in patients with high lactate and low total cholesterol concentrations at admission. Accuracies of lactate, cholesterol concentration and lactate to cholesterol (Lact/Chol) ratio to predict 30-day mortality were evaluated using ROC analysis. The Lact/Chol ratio provided the best accuracy with an AUC of 0.82 (P < 0.0001). The acute physiology and chronic health evaluation (APACHE) II scoring system provided an AUC of 0.76 for predicting 30-day mortality. APACHE II score, Cardiogenic shock (CS) state and Lact/Chol ratio ≥ 0.4 (cutoff value with 82% sensitivity and 64% specificity) were significant independent predictors of 30-day mortality with hazard ratios (HR) of 1.11, 4.77 and 3.59, respectively. In CS patients, the HR of 30-day mortality risk for plasma Lact/Chol ratio ≥ 0.4 was 3.26 compared to a Lact/Chol ratio of < 0.4 (P  =  0.018). The predictive power of the Lact/Chol ratio for 30-day mortality outcome was confirmed with the independent validation cohort.

Conclusion

This study identifies the plasma Lact/Chol ratio as a useful objective and simple parameter to evaluate short term prognostic and could be integrated into quantitative guidance for decision making in heart failure care.  相似文献   
107.
The improvement of cell specific productivities for the formation of therapeutic proteins is an important step towards intensified production processes. Among others, the induction of the desired production phenotype via proper media additives is a feasible solution provided that said compounds adequately trigger metabolic and regulatory programs inside the cells. In this study, S-(5′-adenosyl)- l -methionine (SAM) and 5′-deoxy-5′-(methylthio)adenosine (MTA) were found to stimulate cell specific productivities up to approx. 50% while keeping viable cell densities transiently high and partially arresting the cell cycle in an anti-IL-8-producing CHO-DP12 cell line. Noteworthy, MTA turned out to be the chemical degradation product of the methyl group donor SAM and is consumed by the cells.  相似文献   
108.
We investigated the filter properties of the highly branched trunk lateral lines of the stichaeid Xiphister atropurpureus and compared them to the filter properties of simple lateral line canals. For this purpose artificial canals were constructed, some of which were fitted with artificial neuromasts. In still water, the response of a simple canal versus two types of Xiphister-like canals to a vibrating sphere stimulus were similar, as was the decrease in the responses as a function of sphere distance. Also comparable was the mechanical coupling between neighboring parts of the main canal. However, compared to the simple canal, the Xiphister-like canals showed a lower spatial resolution. Equipping artificial lateral line canals with artificial neuromasts revealed that Xiphister-like canals, i.e., lateral lines canals with tubuli that contained widely spaced pores, improve the signal-to-noise ratio in a highly turbulent environment. Even though a reduced spatial resolution is the price for this improvement, Xiphister may compensate for this compromise by having four instead of the usual single trunk lateral line canal. We suggest that lateral line canals with tubuli that contain widely spaced pores and multiple lateral line canals on each body side are an adaptation to a highly turbulent aquatic environment.  相似文献   
109.
Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-l-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.  相似文献   
110.
The regional specialization of brain function has been well documented in the mouse and fruitfly. The expression of regulatory factors in specific regions of the brain during development suggests that they function to establish or maintain this specialization. Here, we focus on two such factors—the Drosophila cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their vertebrate homologues Emx1/2 and Otx1/2—and review novel insight into their multiple crucial roles in the formation of complex sensory systems. While the early requirement of these genes in specification of the neuroectoderm has been discussed previously, here we consider more recent studies that elucidate the later functions of these genes in sensory system formation in vertebrates and invertebrates. These new studies show that the ems and Emx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective olfactory systems. Moreover, they demonstrate that the otd and Otx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective visual systems. Based on these recent experimental findings, we discuss the possibility that the olfactory and visual systems of flies and mice share a common evolutionary origin, in that the conserved visual and olfactory circuit elements derive from conserved domains of otd/Otx and ems/Emx action in the urbilaterian ancestor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号