首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   92篇
  2021年   13篇
  2020年   9篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   24篇
  2015年   43篇
  2014年   41篇
  2013年   57篇
  2012年   46篇
  2011年   64篇
  2010年   40篇
  2009年   37篇
  2008年   54篇
  2007年   32篇
  2006年   48篇
  2005年   48篇
  2004年   24篇
  2003年   36篇
  2002年   31篇
  2001年   16篇
  2000年   17篇
  1999年   24篇
  1998年   9篇
  1997年   7篇
  1993年   7篇
  1992年   19篇
  1991年   12篇
  1990年   11篇
  1989年   11篇
  1988年   12篇
  1987年   9篇
  1986年   8篇
  1985年   19篇
  1984年   16篇
  1983年   14篇
  1982年   9篇
  1979年   13篇
  1978年   14篇
  1977年   13篇
  1975年   12篇
  1974年   14篇
  1972年   10篇
  1971年   10篇
  1970年   9篇
  1969年   11篇
  1968年   13篇
  1967年   13篇
  1966年   5篇
  1965年   6篇
排序方式: 共有1081条查询结果,搜索用时 46 毫秒
981.
982.
Identifying high-quality habitat (i.e., areas with resources and conditions suitable to support long-term species persistence) is a priority for conservation, but estimating habitat quality is expensive and time consuming. Instead managers often rely on occurrence data or models of habitat suitability, but these data are only proximally related to individual and population persistence on the landscape. In most habitat suitability modeling studies, researchers treat the model as a hypothesis and the occurrence data as the truth. But occurrence does not always correlate with habitat as expected; therefore, occurrence data may be unreliable. We propose that suitability models and occurrence data be given equal weight to highlight areas of disagreement for future demographic study. To highlight this approach, we used the giant kangaroo rat (Dipodomys ingens) as a case study because their distinct burrow mounds allow for remote monitoring of short-term presence and long-term persistence. We conducted trapping, manned aerial surveys, and aerial imagery surveys in the San Joaquin Desert in California, USA, between 2001 and 2017 and compared the results to an existing habitat suitability model to provide estimates of long-term persistence based on the presence of burrow mounds made by giant kangaroo rats. We treated areas of positive agreement as priorities for habitat conservation and areas of negative agreement as areas managers could ignore. Remaining areas should be prioritized for additional occupancy and demographic studies. From an initial area of 17,385 km2, we identified 668 km2 of currently occupied high-quality habitat. Of this, just 135 km2 was on private land and therefore requiring protection. We classified 1,498 km2 (8.6%) for additional research. Of that area, 744 km2 was flagged for additional occupancy surveys. Our 3 data sets disagreed over 754 km2, suggesting a need for further demographic studies to reveal important population-habitat relationships for the species in those areas. This approach can be useful as part of any habitat conservation exercise for prioritizing protection or targeting future demographic studies. © 2021 The Wildlife Society.  相似文献   
983.
984.
Increased expression of SIRT1 extends the lifespan of lower organisms and delays the onset of age‐related diseases in mammals. Here, we show that SRT2104, a synthetic small molecule activator of SIRT1, extends both mean and maximal lifespan of mice fed a standard diet. This is accompanied by improvements in health, including enhanced motor coordination, performance, bone mineral density, and insulin sensitivity associated with higher mitochondrial content and decreased inflammation. Short‐term SRT2104 treatment preserves bone and muscle mass in an experimental model of atrophy. These results demonstrate it is possible to design a small molecule that can slow aging and delay multiple age‐related diseases in mammals, supporting the therapeutic potential of SIRT1 activators in humans.  相似文献   
985.
Lung cancer is the leading cause of cancer-related death worldwide. Aberrant splicing has been implicated in lung tumorigenesis. However, the functional links between splicing regulation and lung cancer are not well understood. Here we identify the RNA-binding protein QKI as a key regulator of alternative splicing in lung cancer. We show that QKI is frequently down-regulated in lung cancer, and its down-regulation is significantly associated with a poorer prognosis. QKI-5 inhibits the proliferation and transformation of lung cancer cells both in vitro and in vivo. Our results demonstrate that QKI-5 regulates the alternative splicing of NUMB via binding to two RNA elements in its pre-mRNA, which in turn suppresses cell proliferation and prevents the activation of the Notch signaling pathway. We further show that QKI-5 inhibits splicing by selectively competing with a core splicing factor SF1 for binding to the branchpoint sequence. Taken together, our data reveal QKI as a critical regulator of splicing in lung cancer and suggest a novel tumor suppression mechanism involving QKI-mediated regulation of the Notch signaling pathway.  相似文献   
986.
Oxygen supply is crucial in industrial application of microbial systems, such as Corynebacterium glutamicum, but oxygen transfer is often neglected in early strain characterizations, typically done under aerobic conditions. In this work, a new procedure for oxygen transfer screening is presented, assessing the impact of maximum oxygen transfer conditions (OTRmax) within microtiter plate-based cultivation for enhanced throughput. Oxygen-dependent growth and productivity were characterized for C. glutamicum ATCC13032 and C. glutamicum DM1933 (lysine producer). Biomass and lysine product yield are affected at OTRmax below 14 mmol L?1 h?1 in a standardized batch process, but not by further increase of OTRmax above this threshold value indicating a reasonable tradeoff between power input and oxygen transfer capacity OTRmax. The described oxygen transfer screening allows comparative determination of metabolic robustness against oxygen transfer limitation and serves identification of potential problems or opportunities later created during scale-up.  相似文献   
987.
Evidence based clinical guidelines are implemented to treat patients efficiently that include efficacy, tolerability but also health economic considerations. This is of particular relevance to the new direct acting antiviral agents that have revolutionized treatment of chronic hepatitis C. For hepatitis C genotypes 2/3 interferon free treatment is already available with sofosbuvir plus ribavirin. However, treatment with sofosbuvir-based regimens is 10–20 times more expensive compared to pegylated interferon alfa and ribavirin (PegIFN/RBV). It has to be discussed if PegIFN/RBV is still an option for easy to treat patients. We assessed the treatment of patients with chronic hepatitis C genotypes 2/3 with PegIFN/RBV in a real world setting according to the latest German guidelines. Overall, 1006 patients were recruited into a prospective patient registry with 959 having started treatment. The intention-to-treat analysis showed poor SVR (GT2 61%, GT3 47%) while patients with adherence had excellent SVR in the per protocol analysis (GT2 96%, GT3 90%). According to guidelines, 283 patients were candidates for shorter treatment duration, namely a treatment of 16 weeks (baseline HCV-RNA <800.000 IU/mL, no cirrhosis and RVR). However, 65% of these easy to treat patients have been treated longer than recommended that resulted in higher costs but not higher SVR rates. In conclusion, treatment with PegIFN/RBV in a real world setting can be highly effective yet similar effective than PegIFN± sofosbuvir/RBV in well-selected naïve G2/3 patients. Full adherence to guidelines could be further improved, because it would be important in the new era with DAA, especially to safe resources.  相似文献   
988.
Understanding the interactions of plant-parasitic nematodes with antagonistic soil microbes could provide opportunities for novel crop protection strategies. Three arable soils were investigated for their suppressiveness against the root knot nematode Meloidogyne hapla. For all three soils, M. hapla developed significantly fewer galls, egg masses, and eggs on tomato plants in unsterilized than in sterilized infested soil. Egg numbers were reduced by up to 93%. This suggested suppression by soil microbial communities. The soils significantly differed in the composition of microbial communities and in the suppressiveness to M. hapla. To identify microorganisms interacting with M. hapla in soil, second-stage juveniles (J2) baited in the test soil were cultivation independently analyzed for attached microbes. PCR-denaturing gradient gel electrophoresis of fungal ITS or 16S rRNA genes of bacteria and bacterial groups from nematode and soil samples was performed, and DNA sequences from J2-associated bands were determined. The fingerprints showed many species that were abundant on J2 but not in the surrounding soil, especially in fungal profiles. Fungi associated with J2 from all three soils were related to the genera Davidiella and Rhizophydium, while the genera Eurotium, Ganoderma, and Cylindrocarpon were specific for the most suppressive soil. Among the 20 highly abundant operational taxonomic units of bacteria specific for J2 in suppressive soil, six were closely related to infectious species such as Shigella spp., whereas the most abundant were Malikia spinosa and Rothia amarae, as determined by 16S rRNA amplicon pyrosequencing. In conclusion, a diverse microflora specifically adhered to J2 of M. hapla in soil and presumably affected female fecundity.  相似文献   
989.
990.
A hallmark of cellular processes is the spatio-temporally regulated interplay of biochemical components. Assessing spatial information of molecular interactions within living cells is difficult using traditional biochemical methods. Developments in green fluorescent protein technology in combination with advances in fluorescence microscopy have revolutionised this field of research by providing the genetic tools to investigate the spatio-temporal dynamics of biomolecules in live cells. In particular, fluorescence lifetime imaging microscopy (FLIM) has become an inevitable technique for spatially resolving cellular processes and physical interactions of cellular components in real time based on the detection of Förster resonance energy transfer (FRET). In this review, we provide a theoretical background of FLIM as well as FRET-FLIM analysis. Furthermore, we show two cases in which advanced microscopy applications revealed many new insights of cellular processes in living plant cells as well as in whole plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号