首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   63篇
  国内免费   6篇
  2022年   6篇
  2021年   14篇
  2020年   13篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   26篇
  2015年   42篇
  2014年   45篇
  2013年   58篇
  2012年   54篇
  2011年   60篇
  2010年   36篇
  2009年   33篇
  2008年   50篇
  2007年   33篇
  2006年   49篇
  2005年   47篇
  2004年   25篇
  2003年   48篇
  2002年   29篇
  2001年   19篇
  2000年   12篇
  1999年   13篇
  1998年   4篇
  1997年   7篇
  1993年   5篇
  1992年   7篇
  1991年   12篇
  1990年   6篇
  1989年   13篇
  1988年   4篇
  1987年   8篇
  1986年   9篇
  1985年   11篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   9篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   9篇
  1972年   5篇
  1971年   6篇
  1970年   6篇
  1969年   5篇
  1968年   5篇
排序方式: 共有937条查询结果,搜索用时 15 毫秒
61.
62.
The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.  相似文献   
63.
64.
The US National Assessment of Educational Progress (NAEP) measures cognitive competences in reading and mathematics of US students (last 2012 survey N = 50,000). The long-term development based on results from 1971 to 2012 allows a prediction of future cognitive trends. For predicting US averages also demographic trends have to be considered. The largest groups’ (White) average of 1978/80 was set at M = 100 and SD = 15 and was used as a benchmark. Based on two past NAEP development periods for 17-year-old students, 1978/80 to 2012 (more optimistic) and 1992 to 2012 (more pessimistic), and demographic projections from the US Census Bureau, cognitive trends until 2060 for the entire age cohort and ethnic groups were estimated. Estimated population averages for 2060 are 103 (optimistic) or 102 (pessimistic). The average rise per decade is dec = 0.76 or 0.45 IQ points. White-Black and White-Hispanic gaps are declining by half, Asian-White gaps treble. The catch-up of minorities (their faster ability growth) contributes around 2 IQ to the general rise of 3 IQ; however, their larger demographic increase reduces the general rise at about the similar amount (-1.4 IQ). Because minorities with faster ability growth also rise in their population proportion the interactive term is positive (around 1 IQ). Consequences for economic and societal development are discussed.  相似文献   
65.

Background

Physical performance is reported to have various beneficial effects on human health, especially in older individuals. Although such effects are associated with body mass index (BMI), the relationship between BMI and physical performance has not been clarified.

Design

We conducted a cross-sectional study of 966 suburb-dwelling Tianjin individuals aged ≥ 60 years (average age 67.5±6.02, men 435, women 531). Mobility, balance, and muscle strength were assessed by walking speed, timed up-and-go test (TUGT), and grip strength, respectively. The subjects were categorized into three groups based on BMI (kg/m2) as follows: normal weight, 18.5 ≤ BMI ≤ 23.9; overweight, 24.0 ≤ BMI ≤ 27.9; and obese, BMI ≥ 28.0.

Result

After adjusting for all other variables, relative grip strength decreased when BMI increased in both men and women (P for trend <0.001 and <0.001, respectively). BMI may be negatively associated with TUGT performance in the women only. There was no apparent association between walking speed and BMI in either sex, but after adjusting for age, walking speed was faster when BMI increased in women (P for trend= 0.0162).

Conclusion

This study suggests that in older individuals, higher BMI is associated with poor muscle strength in both sexes.  相似文献   
66.
67.
Human-pathogenic Bartonella henselae causes cat scratch disease and vasculoproliferative disorders. An important pathogenicity factor of B. henselae is the trimeric autotransporter adhesin (TAA) Bartonella adhesin A (BadA), which is modularly constructed, consisting of a head, a long and repetitive neck-stalk module, and a membrane anchor. BadA is involved in bacterial autoagglutination, binding to extracellular matrix proteins and host cells, and in proangiogenic reprogramming. The slow growth of B. henselae and limited tools for genetic manipulation are obstacles for detailed examination of BadA and its domains. Here, we established a recombinant expression system for BadA mutants in Escherichia coli allowing functional analysis of particular BadA domains. Using a BadA mutant lacking 21 neck-stalk repeats (BadA HN23), the BadA HN23 signal sequence was exchanged with that of E. coli OmpA, and the BadA membrane anchor was additionally replaced with that of Yersinia adhesin A (YadA). Constructs were cloned in E. coli, and hybrid protein expression was detected by immunoblotting, fluorescence microscopy, and flow cytometry. Functional analysis revealed that BadA hybrid proteins mediate autoagglutination and binding to collagen and endothelial cells. In vivo, expression of this BadA construct correlated with higher pathogenicity of E. coli in a Galleria mellonella infection model.  相似文献   
68.
69.
BACKGROUND AND AIM: Immunomodulatory and protective properties have been identified for the keratinocyte growth factor (KGF). For hepatocytes, pro-proliferative and anti-apoptotic effects of this growth factor have been reported in vitro. This study was designed to characterize a putative role of KGF in observed histomorphological changes in both, human and experimental liver fibrosis. METHODS: Liver fibrosis and cirrhosis was induced in rats by repetitive exposure to phenobarbitone and increasing doses of carbon tetrachloride. Human samples were obtained from patients undergoing surgery for partial hepatectomy or transplantation. Organ samples were scored for inflammation and morphological changes. Expression of KGF and its receptor (KGFR) mRNA was quantified by real-time RT-PCR. Protein expression and receptor phosphorylation was determined by Western blot analysis. In-situ hybridization and immunohistochemistry were utilized to determine distribution of KGF and KGFR in the liver. RESULTS: Expression of KGF was significantly increased in damaged liver tissue in correlation to the degree of fibrosis, whereas expression of the receptor was up-regulated in early stages of liver fibrosis and down-regulated in cirrhotic organs. Protein expression of this growth factor and its receptor correlated with the alterations in mRNA. KGF expression was restricted to mesenchymal cells, whereas expression of KGFR was detected on hepatocytes only. CONCLUSION: The expression of KGF and KGFR is differentially and significantly regulated in damaged liver tissue. This growth factor might therefore not only contribute to morphological alterations but also regeneration of liver parenchyma most likely mediated by indirect mechanisms of action.  相似文献   
70.
Redox modulation is a general mechanism for enzyme regulation, particularly for the post-translational regulation of the Calvin cycle in chloroplasts of green plants. Although red algae and photosynthetic protists that harbor plastids of red algal origin contribute greatly to global carbon fixation, relatively little is known about post-translational regulation of chloroplast enzymes in this important group of photosynthetic eukaryotes. To address this question, we used biochemistry, phylogenetics and analysis of recently completed genome sequences. We studied the functionality of the chloroplast enzymes phosphoribulokinase (PRK, EC 2.7.1.19), NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP-GAPDH, GapA, EC 1.2.1.13), fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11) and glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), as well as NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.37) in the unicellular red alga Galdieria sulphuraria (Galdieri) Merola. Despite high sequence similarity of G. sulphuraria proteins to those of other photosynthetic organisms, we found a number of distinct differences. Both PRK and GAPDH co-eluted with CP12 in a high molecular weight complex in the presence of oxidized glutathione, although Galdieria CP12 lacks the two cysteines essential for the formation of the N-terminal peptide loop present in higher plants. However, PRK inactivation upon complex formation turned out to be incomplete. G6PDH was redox modulated, but remained in its tetrameric form; FBPase was poorly redox regulated, despite conservation of the two redox-active cysteines. No indication for the presence of plastidic NADP-MDH (and other components of the malate valve) was found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号