首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3492篇
  免费   337篇
  国内免费   1篇
  3830篇
  2023年   24篇
  2022年   71篇
  2021年   86篇
  2020年   52篇
  2019年   65篇
  2018年   62篇
  2017年   53篇
  2016年   95篇
  2015年   151篇
  2014年   166篇
  2013年   177篇
  2012年   233篇
  2011年   264篇
  2010年   126篇
  2009年   113篇
  2008年   177篇
  2007年   162篇
  2006年   137篇
  2005年   135篇
  2004年   95篇
  2003年   114篇
  2002年   116篇
  2001年   75篇
  2000年   70篇
  1999年   77篇
  1998年   29篇
  1997年   26篇
  1996年   28篇
  1995年   22篇
  1994年   27篇
  1992年   47篇
  1991年   36篇
  1990年   36篇
  1989年   37篇
  1988年   32篇
  1987年   27篇
  1986年   29篇
  1985年   40篇
  1984年   21篇
  1983年   31篇
  1982年   30篇
  1981年   21篇
  1980年   23篇
  1979年   26篇
  1978年   19篇
  1977年   21篇
  1973年   24篇
  1972年   24篇
  1970年   21篇
  1969年   18篇
排序方式: 共有3830条查询结果,搜索用时 10 毫秒
121.
Estrogen suppression through the use of an aromatase inhibitor is an effective endocrine treatment option for postmenopausal breast cancer patients with estrogen receptor (ER)-positive disease, however, there are concerns that long-term estrogen deprivation will inevitably lead to resistance. To address the issue of acquired resistance to long-term estrogen deprivation our laboratory has developed an ER+/PR- hormone-independent breast cancer cell line, MCF-7:5C which is a variant clone of wild-type MCF-7 cells. Originally, these cells were cultured in estrogen-free MEM containing 5% charcoal-stripped calf serum and were found to be resistant to both estradiol (E(2)) and antiestrogens. Interestingly, a completely different phenomenon was observed when MCF-7:5C cells were cultured in phenol red-free RPMI 1640 medium containing 10% charcoal-stripped fetal bovine serum (SFS). Using DNA quantitation assays, we examined the effect of E(2) on the growth of MCF-7:5C cells under different media conditions. Our results showed that 10(-9)M E(2) caused a dramatic 90% reduction in the growth of MCF-7:5C cells cultured in RPMI medium containing 10% SFS but did not have any significant inhibitory effects on cells cultured in MEM media. Additional experiments were performed to determine whether the medium or the serum facilitated the inhibitory effects of E(2) and the results indicated that it was the serum. Annexin V and DAPI staining confirmed that the E(2)-induced growth inhibition of MCF-7:5C cells was due to apoptosis. We also examined the tumorigenic potential of MCF-7:5C cells by injecting 1x10(7)cells/site into ovariectomized athymic mice and found that these cells, previously cultured in RPMI media, spontaneously grew into tumors in the absence of E(2). Overall, these results show that low concentrations (>10(-11)M) of E(2) are capable of inducing apoptosis in an aromatase resistant breast cancer cell model and that this effect is highly influenced by the medium in which the cells are grown.  相似文献   
122.
ANG II applied to the interstitial space influences carbohydrate and lipid metabolism in a tissue-specific fashion. Thus endogenous ANG II may have a tonic effect on tissue metabolism that could be reversed with ANG II type 1 (AT1) receptor blockade, particularly during adrenergic stimulation. We studied 14 obese men. They were treated for 10 days with the AT1 receptor blocker irbesartan or with placebo in a double-blind and crossover fashion. At the end of each treatment period, we assessed skeletal muscle and adipose tissue metabolism using the microdialysis technique. The ethanol dilution technique was applied to follow changes in tissue blood flow. Measurements were obtained at baseline and during application of incremental isoproterenol concentrations through the microdialysis catheter. Blood pressure decreased from 133 +/- 3/84 +/- 3 to 128 +/- 3/79 +/- 2 mmHg for systolic and diastolic blood, respectively (P = 0.02 and 0.006, respectively) with AT1 receptor blockade. Isoproterenol perfusion caused a dose-dependent increase in dialysate glycerol in adipose tissue and in skeletal muscle. Irbesartan slightly reduced the isoproterenol-induced glycerol response in adipose tissue (P < 0.05 by ANOVA). Ethanol ratio, interstitial glucose supply, and lactate production in adipose tissue and skeletal muscle were similar with placebo and irbesartan. We conclude that AT1 receptor blockade in obese men does not reveal a major tonic ANG II effect on interstitial glucose supply, lipolysis, or glycolysis in skeletal muscle, either at rest or during beta-adrenergic stimulation. Endogeneous ANG II may slightly increase adipose tissue lipolysis. The mechanism may promote the redistribution of triglycerides from adipose tissue toward other organs.  相似文献   
123.
124.
Black soldier fly (BSF) larvae are considered a promising biological reactor to convert organic waste and reduce the impact of zoonotic pathogens on the environment. We analysed the effects of BSF larvae on Staphylococcus aureus and Salmonella spp. populations in pig manure (PM), which showed that BSF larvae can significantly reduce the counts of the associated S. aureus and Salmonella spp. Then, using a sterile BSF larval system, we validated the function of BSF larval intestinal microbiota in vivo to suppress pathogens, and lastly, we isolated eight bacterial strains from the BSF larval gut that inhibit S. aureus. Results indicated that functional microbes are essential for BSF larvae to antagonise S. aureus. Moreover, the analysis results of the relationship between the intestinal microbiota and S. aureus and Salmonella spp. showed that Myroides, Tissierella, Oblitimonas, Paenalcalignes, Terrisporobacter, Clostridium, Fastidiosipila, Pseudomonas, Ignatzschineria, Savagea, Moheibacter and Sphingobacterium were negatively correlated with S. aureus and Salmonella. Overall, these results suggested that the potential ability of BSF larvae to inhibit S. aureus and Salmonella spp. present in PM is accomplished primarily by gut-associated microorganisms.  相似文献   
125.
A barrier to cost-efficient biomanufacturing is the instability of engineered genetic elements, such as plasmids. Instability can also manifest at the whole-genome level, when fungal dikaryons revert to parental species due to nuclear segregation during cell division. Here, we show that by encapsulating Saccharomyces cerevisiae-Pichia stipitis dikaryons in an alginate matrix, we can limit cell division and preserve their expanded metabolic capabilities. As a proxy to cellulosic ethanol production, we tested the capacity of such cells to carry out ethanologenic fermentation of glucose and xylose, examining substrate use, ploidy, and cell viability in relation to planktonic fusants, as well as in relation to planktonic and encapsulated cell cultures consisting of mixtures of these species. Glucose and xylose consumption and ethanol production by encapsulated dikaryons were greater than planktonic controls. Simultaneous co-fermentation did not occur; rather the order and kinetics of glucose and xylose catabolism by encapsulated dikaryons were similar to cultures where the two species were encapsulated together. Over repeated cycles of fed-batch culture, encapsulated S. cerevisiae-P. stipitis fusants exhibited a dramatic increase in genomic stability, relative to planktonic fusants. Encapsulation also increased the stability of antibiotic-resistance plasmids used to mark each species and preserved a fixed ratio of S. cerevisiae to P. stipitis cells in mixed cultures. Our data demonstrate how encapsulating cells in an extracellular matrix restricts cell division and, thereby, preserves the stability and biological activity of entities ranging from genomes to plasmids to mixed populations, each of which can be essential to cost-efficient biomanufacturing.  相似文献   
126.
To explore the role of the glutathione oxidation-reduction cycle in altering the sensitivity of rats to the effects of hyperbaric hyperoxia, we administered N,N-bis(2-chloroethyl)-N-nitrosourea (BCNU) to decrease tissue glutathione reductase activity. We then exposed these animals and their matched vehicle-treated controls to 100% O2 at 4 ATA. Animals that received BCNU and were immediately exposed to hyperbaric O2 showed enhanced toxicity by seizing earlier in the exposure than controls. Animals that received BCNU 18 h before the hyperbaric O2 exposure were paradoxically protected from the effects of the exposure with a prolongation of their time to initial seizure and a marked increase in their survival time during the exposure. Tissue glutathione concentrations were also measured in the various groups and the hyperbaric O2 exposure produced marked decreases in hepatic glutathione levels in all control animals. In animals treated with BCNU 18 h before exposure, hepatic glutathione concentrations also decreased, but the concentrations had significantly increased during the 18-h waiting period, allowing these animals to maintain hepatic levels in the normal range even during their hyperbaric exposures. We conclude that treatment of rats with BCNU 18 h before exposure to hyperbaric hyperoxia results in enhanced protection of the animals during the exposure.  相似文献   
127.
We describe a systematic study of how macrocyclization in the P1–P3 region of hydroxyethylamine-based inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme (BACE1) modulates in vitro activity. This study reveals that in a number of instances macrocyclization of bis-terminal dienes leads to improved potency toward BACE1 and selectivity against cathepsin D (CatD), as well as greater amyloid β-peptide (Aβ)-lowering activity in HEK293T cells stably expressing APPSW. However, for several closely related analogs the benefits of macrocyclization are attenuated by the effects of other structural features in different regions of the molecules. X-ray crystal structures of three of these novel macrocyclic inhibitors bound to BACE1 revealed their binding conformations and interactions with the enzyme.  相似文献   
128.
129.
130.
We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号