首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1680篇
  免费   133篇
  国内免费   1篇
  2023年   6篇
  2022年   12篇
  2021年   33篇
  2020年   22篇
  2019年   29篇
  2018年   20篇
  2017年   27篇
  2016年   42篇
  2015年   68篇
  2014年   57篇
  2013年   124篇
  2012年   121篇
  2011年   132篇
  2010年   101篇
  2009年   92篇
  2008年   124篇
  2007年   95篇
  2006年   89篇
  2005年   99篇
  2004年   102篇
  2003年   96篇
  2002年   107篇
  2001年   24篇
  2000年   21篇
  1999年   22篇
  1998年   17篇
  1997年   13篇
  1996年   17篇
  1995年   15篇
  1994年   10篇
  1993年   10篇
  1992年   17篇
  1991年   4篇
  1990年   3篇
  1989年   12篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有1814条查询结果,搜索用时 31 毫秒
61.
A large body of theoretical work suggests that analyses of variation at the maternally inherited mitochondrial (mt)DNA and the paternally inherited non-recombining portion of the Y chromosome (NRY) are a potentially powerful way to reveal the differing migratory histories of men and women across human societies. However, the few empirical studies comparing mtDNA and NRY variation and known patterns of sex-biased migration have produced conflicting results. Here we review some methodological reasons for these inconsistencies, and take them into account to provide an unbiased characterization of mtDNA and NRY variation in chimpanzees, one of the few mammalian taxa where males routinely remain in and females typically disperse from their natal groups. We show that patterns of mtDNA and NRY variation are more strongly contrasting in patrilocal chimpanzees compared with patrilocal human societies. The chimpanzee data we present here thus provide a valuable comparative benchmark of the patterns of mtDNA and NRY variation to be expected in a society with extremely female-biased dispersal.  相似文献   
62.
Nanopore sequencing and phylodynamic modeling have been used to reconstruct the transmission dynamics of viral epidemics, but their application to bacterial pathogens has remained challenging. Cost-effective bacterial genome sequencing and variant calling on nanopore platforms would greatly enhance surveillance and outbreak response in communities without access to sequencing infrastructure. Here, we adapt random forest models for single nucleotide polymorphism (SNP) polishing developed by Sanderson and colleagues (2020. High precision Neisseria gonorrhoeae variant and antimicrobial resistance calling from metagenomic nanopore sequencing. Genome Res. 30(9):1354–1363) to estimate divergence and effective reproduction numbers (Re) of two methicillin-resistant Staphylococcus aureus (MRSA) outbreaks from remote communities in Far North Queensland and Papua New Guinea (PNG; n = 159). Successive barcoded panels of S. aureus isolates (2 × 12 per MinION) sequenced at low coverage (>5× to 10×) provided sufficient data to accurately infer genotypes with high recall when compared with Illumina references. Random forest models achieved high resolution on ST93 outbreak sequence types (>90% accuracy and precision) and enabled phylodynamic inference of epidemiological parameters using birth–death skyline models. Our method reproduced phylogenetic topology, origin of the outbreaks, and indications of epidemic growth (Re > 1). Nextflow pipelines implement SNP polisher training, evaluation, and outbreak alignments, enabling reconstruction of within-lineage transmission dynamics for infection control of bacterial disease outbreaks on portable nanopore platforms. Our study shows that nanopore technology can be used for bacterial outbreak reconstruction at competitive costs, providing opportunities for infection control in hospitals and communities without access to sequencing infrastructure, such as in remote northern Australia and PNG.  相似文献   
63.
Invasive alien species are a major threat to ecosystems. Invasive terrestrial plants can produce allelochemicals which suppress native terrestrial biodiversity. However, it is not known if leached allelochemicals from invasive plants growing in riparian zones, such as Impatiens glandulifera, also affect freshwater ecosystems. We used mesocosms and laboratory experiments to test the impact of I. glandulifera on a simplified freshwater food web. Our mesocosm experiments show that leachate from I. glandulifera significantly reduced population growth rate of the water flea Daphnia magna and the green alga Acutodesmus obliquus, both keystone species of lakes and ponds. Laboratory experiments using the main allelochemical released by I. glandulifera, 2‐methoxy‐1,4‐naphthoquinone, revealed negative fitness effects in D. magna and A. obliquus. Our findings show that allelochemicals from I. glandulifera not only reduce biodiversity in terrestrial habitats but also pose a threat to freshwater ecosystems, highlighting the necessity to incorporate cross‐ecosystem effects in the risk assessment of invasive species.  相似文献   
64.
Mycobacterium tuberculosis, along with other actinobacteria, harbours proteasomes in addition to members of the general bacterial repertoire of degradation complexes. In analogy to ubiquitination in eukaryotes, substrates are tagged for proteasomal degradation with prokaryotic ubiquitin‐like protein (Pup) that is recognized by the N‐terminal coiled‐coil domain of the ATPase Mpa (also called ARC). Here, we reconstitute the entire mycobacterial proteasome degradation system for pupylated substrates and establish its mechanistic features with respect to substrate recruitment, unfolding and degradation. We show that the Mpa–proteasome complex unfolds and degrades Pup‐tagged proteins and that this activity requires physical interaction of the ATPase with the proteasome. Furthermore, we establish the N‐terminal region of Pup as the structural element required for engagement of pupylated substrates into the Mpa pore. In this process, Mpa pulls on Pup to initiate unfolding of substrate proteins and to drag them toward the proteasome chamber. Unlike the eukaryotic ubiquitin, Pup is not recycled but degraded with the substrate. This assigns a dual function to Pup as both the Mpa recognition element as well as the threading determinant.  相似文献   
65.
Introns are generally believed to evolve too rapidly and too erratically to be of much use in phylogenetic reconstructions. Few phylogenetically informative intron sequences are available, however, to ascertain the validity of this supposition. In the present study the supposition was tested on the example of the mammalian class II major histocompatibility complex (Mhc) genes of the DRB family. Since the Mhc genes evolve under balancing selection and are believed to recombine or rearrange frequently, the evolution of their introns could be expected to be particularly rapid and subject to scrambling. Sequences of intron 4 and 5 DRB genes were obtained from polymerase chain reaction-amplified fragments of genomic DNA from representatives of six eutherian orders—Primates, Scandentia, Chiroptera, Dermoptera, Lagomorpha, and Insectivora. Although short stretches of the introns have indeed proved to be unalignable, the bulk of the intron sequences from all six orders, spanning >85 million years (my) of evolution, could be aligned and used in a study of the tempo and mode of intron evolution. The analysis has revealed the Mhc introns to evolve at a rate similar to that of other genes and of synonymous sites of non-Mhc genes. No evidence of homogenization or large-scale scrambling of the intron sequences could be found. The Mhc introns apparently evolve largely by point mutations and insertions/deletions. The phylogenetic signals contained in the intron sequences could be used to identify Scandentia as the sister group of Primates, to support the existence of the Archonta superorder, and to confirm the monophyly of the Chiroptera. Received: 26 October 1998 / Accepted: 21 December 1998  相似文献   
66.
Stat3 is one of the main signaling components of cytokine receptors, including gp130. Here we show that activation of cytokine receptor gp130 resulted in a dramatic ventralization of Xenopus embryos and that the ventralization correlated well with Stat3 activation potential of the receptor. This finding led to identification of Xenopus Stat3 (Xstat3), which showed a 95% homology to its murine and human counterparts, at the amino acid level, and was expressed from the one-cell stage throughout development. The mechanism of gp130/XStat3-mediated ventralization proved to be independent of BMP-4. gp130/Xstat3 stimulation inhibited Smad2-induced ectopic axis formation in embryos and Smad2-dependent luciferase activity. A dominant-negative Stat3, in contrast, dorsalized Xenopus embryos, resulting in ectopic axis formation. We propose that Stat3-mediated signaling has the capacity to modify dorsoventral patterning in the early development of Xenopus.  相似文献   
67.
Na+/Ca2+exchange has been investigated in squid(Loligopealei) rhabdomeric membranes.Ca2+-containing vesicles have beenprepared from purified rhabdomeric membranes by extrusion throughpolycarbonate filters of 1-µm pore size. After removal of externalCa2+, up to 90% of the entrappedCa2+ could be specificallyreleased by the addition of Na+;this finding indicates that most of the vesicles containedNa+/Ca2+exchanger. The Na+-inducedCa2+ efflux had a half-maximumvalue (K1/2) of~44 mM and a Hill coefficient of ~1.7. The maximalNa+-inducedCa2+ efflux was ~0.6 nmolCa2+ · s1 · mgprotein1. SimilarNa+-inducedCa2+ effluxes were measured ifK+ was replaced withLi+ orCs+. Vesicles loaded withCa2+ byNa+/Ca2+exchange also released this Ca2+byNa+/Ca2+exchange, suggesting thatNa+/Ca2+exchange operated in both forward and reverse modes. Limited proteolysis by trypsin resulted in a rate ofCa2+ efflux enhanced byapproximately fivefold when efflux was activated with 95 mM NaCl. For vesicles subjected to limited proteolysis by trypsin,Na+/Ca2+exchange was characterized by aK1/2 of ~25 mMand a Hill coefficient of 1.6. For these vesicles, the maximalNa+-inducedCa2+ efflux was about twice asgreat as in control vesicles. We conclude thatNa+/Ca2+exchange proteins localized in rhabdomeric membranes mediate Ca2+ extrusion in squid photoreceptors.  相似文献   
68.
69.
70.
DNA methylation-based biomarkers have been discovered that could potentially be used for the diagnosis of cancer by detection of circulating, tumor-derived DNA in bodily fluids. Any methylation detection assay that would be applied to these samples must be capable of detecting small amounts of tumor DNA in the presence of background normal DNA. We have developed a real-time PCR assay, called HeavyMethyl, that is well suited for this application. HeavyMethyl uses methylation-specific oligonucleotide blockers and a methylation-specific probe to achieve methylation-specific amplification and detection. We tested the assays on unmethylated and artificially methylated DNA in order to determine the limit of detection. After careful optimization, our glutathione-S-transferase pi1 and Calcitonin assays can amplify as little as 30 and 60 pg of methylated DNA, respectively, and neither assay amplifies unmethylated DNA. The Calcitonin assay showed a highly significant methylation difference between normal colon and colon adenocarcinomas, and methylation was also detected in serum DNA from colon cancer patients. These assays show that HeavyMethyl technology can be successfully employed for the analysis of very low concentrations of methylated DNA, e.g. in serum of patients with tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号