Based on a data-base search, the sequences of 32 Bovidae retroposon elements have been compared. Two conserved areas are identified, and one of the corresponding sequences of the derived bovine consensus was used to design oligonucleotides as primer molecules for random DNA amplification of Bovidae DNA. Such a primer binding site should occur on average every 10,000 bp in the bovine genome, as suggested by a survey of published sequences. This estimate about the distribution of these possible primer binding sites was experimentally substantiated by mapping four of these primer binding sites within 40 kb of contiguous bovine DNA, carrying the heretofore undescribed bovine lactoferrin gene. Furthermore, these conserved, ubiquitous sequence motifs prove to be useful for mapping of bovine DNA. 相似文献
The isolation and identification of two novel metabolites in the fungal metabolism of pyrene are described. The plant-inhabiting basidiomycete Crinipellis stipitaria JK364 metabolized pyrene, a polycyclic aromatic hydrocarbon containing four rings, when grown in submerged cultures in a medium containing malt extract, glucose, and yeast extract. In experiments with [14C] pyrene, after 7 days of incubation 40% of the labeled substrate was converted into organic solvent-extractable metabolites. Metabolites isolated from cultures grown with pyrene were identified as 1-pyrenylsulfate and trans-4,5-dihydro-4,5-dihydroxypyrene. 1-Hydroxypyrene, the precursor of 1-pyrenylsulfate, was also detected. 1-Pyrenylsulfate was isolated from mycelial extracts, whereas trans-4,5-dihydro-4,5-dihydroxypyrene was recovered from the culture filtrate. Identification of the compounds was based on their UV spectra, mass spectra, and nuclear magnetic resonance spectra. This is the first report on the detoxification of a polycyclic aromatic hydrocarbon by a plant-inhabiting basidiomycete. The occurrence of 1-pyrenylsulfate and trans-4,5-dihydro-4,5-dihydroxypyrene among fungal metabolites of pyrene is also new. 相似文献
In frost-hardy and partially dehardened leaves of Brassica oleracea L. var. sabellica L. the distribution of cryoprotective sugars and of chloride between chloroplasts and the nonchloroplast part of leaf cells was investigated using the nonaqueous isolation technique as a means of cell fractionation. In chloroplasts of frost-hardy leaves high concentrations of sucrose and raffinose and comparatively low concentrations of chloride have been found. The ratios between sugars and chloride were so as to ascertain complete protection of the frost-sensitive thylakoid membranes during freezing. During dehardening, sugars decreased especially in the chloroplasts. There was a conversion of sucrose and raffinose into monosaccharides. This led to a large increase in the concentration of glucose and fructose in the nonchloroplast parts of the cells. There is evidence that the sugar concentration in the vacuole increased at the expense of sugars located in chloroplasts and cytoplasm. The quantity of sugars that remained in the chloroplasts did not appear to be sufficient for complete membrane protection at very low freezing temperatures. 相似文献
Type IB topoisomerases are essential enzymes that are responsible for relaxing superhelical tension in DNA by forming a transient covalent nick in one strand of the DNA duplex. Topoisomerase I is a target for anti-cancer drugs such as camptothecin, and these drugs also target the topoisomerases I in pathogenic trypanosomes including Leishmania species and Trypanosoma brucei. Most eukaryotic enzymes, including human topoisomerase I, are monomeric. However, for Leishmania donovani, the DNA-binding activity and the majority of residues involved in catalysis are located in a large subunit, designated TOP1L, whereas the catalytic tyrosine residue responsible for covalent attachment to DNA is located in a smaller subunit, called TOP1S. Here, we present the 2.27A crystal structure of an active truncated L.donovani TOP1L/TOP1S heterodimer bound to nicked double-stranded DNA captured as a vanadate complex. The vanadate forms covalent linkages between the catalytic tyrosine residue of the small subunit and the nicked ends of the scissile DNA strand, mimicking the previously unseen transition state of the topoisomerase I catalytic cycle. This structure fills a critical gap in the existing ensemble of topoisomerase I structures and provides crucial insights into the catalytic mechanism. 相似文献
Host defence against infection requires an integrated response of both the innate and adaptive arms of the immune system. Emerging data indicate that dendritic cells contribute an essential part to the initiation and regulation of adaptive immunity. Dendritic cells guard the sites of pathogen entry to the host and are uniquely suited to detect and capture invading microbes. Upon recognition of microbial structures and appropriate activation, a maturation programme is triggered and dendritic cells migrate to lymphoid organs to stimulate a primary cell-mediated immune response. Moreover, dendritic cells play a critical role in shaping the emerging response, thereby controlling the course of infection. They can discriminate between various types of microorganisms and are capable of producing different cytokines in response to different microbial stimuli. On the other hand, pathogens developed numerous strategies to evade and subvert dendritic cell functions. Elucidating the interactions of dendritic cells with microbial pathogens may lead to novel strategies for combating infectious diseases by dendritic cell-based vaccination and immunotherapy. This review highlights recent advances in our knowledge of the unique role of dendritic cells in counteracting microbial infections. 相似文献
Upon loading with microbial Ag and adoptive transfer, dendritic cells (DC) are able to induce immunity to infections. This offers encouragement for the development of DC-based vaccination strategies. However, the mechanisms underlying the adjuvant effect of DC are not fully understood, and there is a need to identify Ag with which to arm DC. In the present study, we analyzed the role of DC-derived IL-12 in the induction of resistance to Leishmania major, and we evaluated the protective efficacy of DC loaded with individual Leishmania Ag. Using Ag-pulsed Langerhans cells (LC) from IL-12-deficient or wild-type mice for immunization of susceptible animals, we showed that the inability to release IL-12 completely abrogated the capacity of LC to mediate protection against leishmaniasis. This suggests that the availability of donor LC-derived IL-12 is a requirement for the development of protective immunity. In addition, we tested the protective effect of LC loaded with Leishmania homolog of receptor for activated C kinase, gp63, promastigote surface Ag, kinetoplastid membrane protein-11, or Leishmania homolog of eukaryotic ribosomal elongation and initiation factor 4a. The results show that mice vaccinated with LC that had been pulsed with selected molecularly defined parasite proteins are capable of controlling infection with L. major. Moreover, the protective potential of DC pulsed with a given Leishmania Ag correlated with the level of their IL-12 expression. Analysis of the cytokine profile of mice after DC-based vaccination revealed that protection was associated with a shift toward a Th1-type response. Together, these findings emphasize the critical role of IL-12 produced by the sensitizing DC and suggest that the development of a DC-based subunit vaccine is feasible. 相似文献
Studies of infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Ireland, Canada, the USA and Chile, suggest that natural reservoirs for this virus can be found on both sides of the North Atlantic. Based on existing information about ISAV it is believed to be maintained in wild populations of trout and salmon in Europe. It has further been suggested that ISAV is transmitted between wild hosts, mainly during their freshwater spawning phase in rivers, and that wild salmonids, mainly trout, are possible carriers of benign wild-type variants of ISAV. Change in virulence is probably a result of deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates after transmission to farmed salmon. Hence, it has been suggested that the frequency of new outbreaks of ISA in farmed salmon could partly reflect natural variation in the prevalence of ISAV in wild populations of salmonids. The aims of the present study were to screen for ISAV in wild salmonids during spawning in rivers and to determine the pathogenicity of resultant isolates from wild fish. Tissues from wild salmonids were screened by RT-PCR and real-time PCR. The prevalence of ISAV in wild trout Salmo trutta varied from 62 to 100% between tested rivers in 2001. The prevalence dropped in 2002, ranging from 13 to 36% in the same rivers and to only 6% in 2003. All ISAV were nonpathogenic when injected into disease-free Atlantic salmon, but were capable of propagation, as indicated by subsequent viral recovery. However, non-pathogenic ISAV has also been found in farmed salmon, where a prevalence as high as 60% has been registered, but with no mortalities occurring. Based on the results of the present and other studies, it must be concluded that vital information about the importance of wild and man-made reservoirs for the emergence of ISA in salmon farming is still lacking. This information can only be gained by further screening of possible reservoirs, combined with the development of a molecular tool for typing virulence and the geographical origin of the virus isolates. 相似文献
We quantified the predation of Acanthocyclops americanus from the shallow Mediterranean lake Albufera, using gut contents from field collections and laboratory feeding tests. For functional response studies, we used Brachionus plicatilis (at 6 concentrations, 400–4000 ind. 40 ml−1) and Diaphanosoma mongolianum (at 2–20 ind. 40 ml−1). Copepod feeding rates were also estimated using different proportions of rotifer prey and lake seston (0–67.5% of seston + 40 individuals of B. plicatilis). Prey selection studies were conducted using five zooplankton species: Brachionus angularis, Brachionus plicatilis, Keratella tropica, Daphnia magna and Diaphanosoma mongolianum. Gut contents of field-collected adult Acanthocyclops contained filamentous algae and cyanobacteria and 16 zooplankton species (Keratella cochlearis, unspined and spined forms, K. tropica, Brachionus plicatilis, Brachionus calyciflorus, Brachionus angularis, Brachionus variabilis, Asplanchna girodi, Polyarthra vulgaris, Synchaeta pectinata, Lepadella rhomboides, unidentified bdelloids, Alona rectangula, Chydorus sphaericus, Bosmina longirostris, D. magna, Ceriodaphnia dubia and copepod nauplii). When fed B. plicatilis or D. mongolianum, female A. americanus had higher prey consumption rates than males. Increased proportion of lake seston caused reduced consumption of brachionid prey. Our data suggest that A. americanus is omnivorous in nature.
The immune response of atopic individuals against allergens is characterized by increased levels of Th2 cytokines and chemokines. However, the way in which the cytokine/chemokine profile is matched to the type of invading allergen, and why these profiles sometimes derail and lead to disease, is not well understood. We recently demonstrated that pollen modulates dendritic cell (DC) function in a way that results in an enhanced capacity to initiate Th2 responses in vitro. Here, we examined the effects of aqueous birch pollen extracts (Bet.-APE) on chemokine receptor expression and chemokine production by human monocyte-derived DCs. Bet.-APE strongly induced expression and function of CXCR4 and reduced CCR1 and CCR5 expression on immature DCs. In addition, DC treatment with Bet.-APE significantly reduced LPS-induced production of CXCL10/IP-10, CCL5/RANTES; induced CCL22/macrophage-derived chemokine; and did not significantly change release of CCL17/thymus and activation-regulated chemokine. At a functional level, Bet.-APE increased the capacity of LPS-stimulated DCs to attract Th2 cells, whereas the capacity to recruit Th1 cells was reduced. Bet.-APE significantly and dose-dependently enhanced intracellular cAMP, suggesting that water-soluble factors from pollen grains bind a G(alphas)-protein-coupled receptor. E(1)-Phytoprostanes were identified to be one player in the Th2-polarizing potential of aqueous pollen extracts. In summary, our results demonstrate that pollen itself releases regulatory mediators which generate a Th2-promoting micromilieu with preferential recruitment of Th2 cells to the site of pollen exposure. 相似文献