首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2535篇
  免费   250篇
  2023年   16篇
  2022年   21篇
  2021年   49篇
  2020年   37篇
  2019年   38篇
  2018年   37篇
  2017年   39篇
  2016年   72篇
  2015年   129篇
  2014年   135篇
  2013年   149篇
  2012年   220篇
  2011年   182篇
  2010年   130篇
  2009年   111篇
  2008年   161篇
  2007年   195篇
  2006年   167篇
  2005年   150篇
  2004年   115篇
  2003年   109篇
  2002年   134篇
  2001年   31篇
  2000年   29篇
  1999年   29篇
  1998年   36篇
  1997年   20篇
  1996年   15篇
  1995年   18篇
  1994年   9篇
  1993年   12篇
  1992年   15篇
  1991年   16篇
  1990年   12篇
  1989年   7篇
  1988年   11篇
  1987年   13篇
  1986年   7篇
  1985年   7篇
  1984年   8篇
  1983年   12篇
  1982年   9篇
  1981年   5篇
  1979年   10篇
  1977年   5篇
  1976年   6篇
  1974年   5篇
  1973年   4篇
  1970年   4篇
  1966年   4篇
排序方式: 共有2785条查询结果,搜索用时 31 毫秒
121.
The binding protein (BiP; a member of the heat-shock 70 family) is a major chaperone of the endoplasmic reticulum (ER). Interactions with BiP are believed to inhibit unproductive aggregation of newly synthesized secretory proteins during folding and assembly. In vitro, BiP has a preference for peptide sequences enriched in hydrophobic amino acids, which are expected to be exposed only in folding and assembly intermediates or in defective proteins. However, direct information regarding sequences recognized in vivo by BiP on real proteins is very limited. We have shown previously that newly synthesized monomers of the homotrimeric storage protein phaseolin associate with BiP and that phaseolin trimerization in the ER abolishes such interactions. Using different phaseolin constructs and green fluorescent protein (GFP) fusion proteins, we show here that one of the two alpha-helical regions of polypeptide contact in phaseolin trimers (35 amino acids located close to the C terminus and containing three potential BiP binding sites) effectively promotes BiP association with phaseolin and with secretory GFP fusions expressed in transgenic tobacco or in transfected protoplasts. We also show that overexpressed BiP transiently sequesters phaseolin polypeptides. We conclude that one of the regions of monomer contact is a BiP binding determinant and suggest that during the synthesis of phaseolin, the association with BiP and trimer formation are competing events. Finally, we show that the other, internal region of contact between monomers is necessary for phaseolin assembly in vivo and contains one potential BiP binding site.  相似文献   
122.
Virus-specific cytotoxic T lymphocytes (CTL) exert intense selection pressure on replicating simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) in infected individuals. The immunodominant Mamu-A(*)01-restricted Gag p11C, C-M epitope is highly conserved among all sequenced isolates of SIV and therefore likely is structurally constrained. The strategies used by virus isolates to mutate away from an immunodominant epitope-specific CTL response are not well defined. Here we demonstrate that the emergence of a position 2 p11C, C-M epitope substitution (T47I) in a simian-human immunodeficiency virus (SHIV) strain 89.6P-infected Mamu-A(*)01(+) monkey is temporally correlated with the emergence of a flanking isoleucine-to-valine substitution at position 71 (I71V) of the capsid protein. An analysis of the SIV and HIV-2 sequences from the Los Alamos HIV Sequence Database revealed a significant association between any position 2 p11C, C-M epitope mutation and the I71V mutation. The T47I mutation alone is associated with significant decreases in viral protein expression, infectivity, and replication, and these deficiencies are restored to wild-type levels with the introduction of the flanking I71V mutation. Together, these data suggest that a compensatory mutation is selected for in SHIV strain 89.6P to facilitate the escape of that virus from CTL recognition of the dominant p11C, C-M epitope.  相似文献   
123.
124.
The p85alpha regulatory subunit of class I(A) phosphoinositide 3-kinases (PI3K) is derived from the Pik3r1 gene, which also yields alternatively spliced variants p50alpha and p55alpha. It has been proposed that excess monomeric p85 competes with functional PI3K p85-p110 heterodimers. We examined embryonic stem (ES) cells with heterozygous and homozygous disruptions in the Pik3r gene and found that wild type ES cells express virtually no monomeric p85alpha. Although, IGF-1-stimulated PI3K activity associated with insulin receptor substrates was unaltered in all cell lines, p85alpha-null ES cells showed diminished protein kinase B activation despite increased PI3K activity associated with the p85beta subunit. Furthermore, p85alpha-null cells demonstrated growth retardation, increased frequency of apoptosis, and altered cell cycle regulation with a G(0)/G(1) cell cycle arrest and up-regulation of p27(KIP), whereas signaling through CREB and MAPK was enhanced. These phenotypes were reversed by re-expression of p85alpha via adenoviral gene transfer. Surprisingly, all ES cell lines could be differentiated into adipocytes. In these differentiated ES cells, however, compensatory p85beta signaling was lost in p85alpha-null cells while increased signaling by CREB and MAPK was still observed. Thus, loss of p85alpha in ES cells induced alterations in IGF-1 signaling and regulation of apoptosis and cell cycle but no defects in differentiation. However, differentiated ES cells partially lost their ability for compensatory signaling at the level of PI3K, which may explain some of the defects observed in mice with homozygous deletion of the Pik3r1 gene.  相似文献   
125.
Kindler syndrome is an autosomal recessive disorder characterized by neonatal blistering, sun sensitivity, atrophy, abnormal pigmentation, and fragility of the skin. Linkage and homozygosity analysis in an isolated Panamanian cohort and in additional inbred families mapped the gene to 20p12.3. Loss-of-function mutations were identified in the FLJ20116 gene (renamed “KIND1” [encoding kindlin-1]). Kindlin-1 is a human homolog of the Caenorhabditis elegans protein UNC-112, a membrane-associated structural/signaling protein that has been implicated in linking the actin cytoskeleton to the extracellular matrix (ECM). Thus, Kindler syndrome is, to our knowledge, the first skin fragility disorder caused by a defect in actin-ECM linkage, rather than keratin-ECM linkage.  相似文献   
126.
Monosomy 1p36 is the most common terminal deletion syndrome. This contiguous gene deletion syndrome is presumably caused by haploinsufficiency of a number of genes. We have constructed a contig of overlapping large-insert clones for the most distal 10.5 Mb of 1p36, evaluated the deletion sizes in 61 subjects with monosomy 1p36 from 60 families, and created a natural deletion panel. We found pure terminal deletions, interstitial deletions, derivative chromosomes, and more complex rearrangements. Breakpoints were "binned" into 0.5-Mb regions. Analyses revealed some clustering of breakpoints but no single common breakpoint. Determination of the parental origin showed that 60% of de novo 1p36 terminal deletions arose from the maternally inherited chromosome. Of the 61 subjects, 30 were examined systematically through a protocol at the Texas Children's Hospital General Clinical Research Center. Specifically, we report hearing evaluations, palatal and ophthalmological examinations, echocardiograms, neurological assessments, and thyroid function tests. To our knowledge, this systematic molecular and clinical characterization of monosomy 1p36 is the largest and most comprehensive study of this deletion syndrome to date. Many cytogenetically visible, apparent terminal deletions are more complex than anticipated by cytogenetics, as revealed at the molecular level by our study. Our clinical findings allow for the more accurate recognition of the syndrome and for proper medical evaluation.  相似文献   
127.
Schubert HL  Phillips JD  Hill CP 《Biochemistry》2003,42(19):5592-5599
Posttranslational methylation of release factors on the glutamine residue of a conserved GGQ motif is required for efficient termination of protein synthesis. This methylation is performed by an N(5)-glutamine methyltransferase called PrmC/HemK, whose crystal structure we report here at 2.2 A resolution. The electron density at the active site appears to contain a mixture of the substrates, S-adenosyl-L-methionine (AdoMet) and glutamine, and the products, S-adenosyl-L-homocysteine (AdoHcy) and N(5)-methylglutamine. The C-terminal domain of PrmC adopts the canonical AdoMet-dependent methyltransferase fold and shares structural similarity with the nucleotide N-methyltransferases in the active site, including use of a conserved (D/N)PPY motif to select and position the glutamine substrate. Residues of the PrmC (197)NPPY(200) motif form hydrogen bonds that position the planar Gln side chain such that the lone-pair electrons on the nitrogen nucleophile are oriented toward the methyl group of AdoMet. In the product complex, the methyl group remains pointing toward the sulfur, consistent with either an sp(3)-hybridized, positively charged Gln nitrogen, or a neutral sp(2)-hybridized nitrogen in a strained conformation. Due to steric overlap within the active site, proton loss and formation of the neutral planar methylamide product are likely to occur during or after product release. These structures, therefore, represent intermediates along the catalytic pathway of PrmC and show how the (D/N)PPY motif can be used to select a wide variety substrates.  相似文献   
128.
The cytoskeleton of Giardia lamblia   总被引:6,自引:0,他引:6  
Giardia lamblia is a ubiquitous intestinal pathogen of mammals. Evolutionary studies have also defined it as a member of one of the earliest diverging eukaryotic lineages that we are able to cultivate and study in the laboratory. Despite early recognition of its striking structure resembling a half pear endowed with eight flagella and a unique ventral disk, a molecular understanding of the cytoskeleton of Giardia has been slow to emerge. Perhaps most importantly, although the association of Giardia with diarrhoeal disease has been known for several hundred years, little is known of the mechanism by which Giardia exacts such a toll on its host. What is clear, however, is that the flagella and disk are essential for parasite motility and attachment to host intestinal epithelial cells. Because peristaltic flow expels intestinal contents, attachment is necessary for parasites to remain in the small intestine and cause diarrhoea, underscoring the essential role of the cytoskeleton in virulence. This review presents current day knowledge of the cytoskeleton, focusing on its role in motility and attachment. As the advent of new molecular technologies in Giardia sets the stage for a renewed focus on the cytoskeleton and its role in Giardia virulence, we discuss future research directions in cytoskeletal function and regulation.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号