首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   42篇
  国内免费   1篇
  584篇
  2023年   4篇
  2022年   5篇
  2021年   6篇
  2020年   10篇
  2017年   6篇
  2016年   7篇
  2015年   18篇
  2014年   16篇
  2013年   31篇
  2012年   34篇
  2011年   30篇
  2010年   24篇
  2009年   17篇
  2008年   24篇
  2007年   23篇
  2006年   18篇
  2005年   23篇
  2004年   20篇
  2003年   31篇
  2002年   31篇
  2001年   9篇
  2000年   9篇
  1999年   11篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1994年   8篇
  1993年   12篇
  1992年   9篇
  1991年   4篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   7篇
  1985年   3篇
  1984年   8篇
  1983年   7篇
  1982年   3篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1975年   6篇
  1974年   5篇
  1973年   5篇
  1972年   3篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
  1965年   3篇
排序方式: 共有584条查询结果,搜索用时 15 毫秒
141.
Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min−1 mg of protein−1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min−1 mg of protein−1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min−1 mg of protein−1 and could be increased to 10.7 nmol min−1 mg of protein−1 after the trichomes were starved for 45 h. Incorporation of 14CO2 was at a rate of 0.4 to 0.8 nmol min−1 mg of protein−1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min−1 mg of protein−1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples.  相似文献   
142.
Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more ‘natural’ conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA''s value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat.  相似文献   
143.
Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The DOC concentration of the artificial seawater we used for cultivation was 4.4 μmol C L-1, which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 μmol C L -1). During the three-week duration of the experiment, cell numbers increased from 40 cells mL-1 to 2x104 cells mL -1 in artificial and to 3x105 cells mL -1 in natural seawater. No nitrogen fixation and minor CO2 fixation (< 1% of cellular carbon) was observed. Our data show that in both media, amino acids were not the main substrate for growth. Instead, FT-ICR-MS analysis revealed usage of a variety of different dissolved organic molecules, belonging to a wide range of chemical compound groups, also containing nitrogen. The present study shows that marine heterotrophic bacteria are able to proliferate with even lower DOC concentrations than available in natural ultra-oligotrophic seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements.  相似文献   
144.
A lithotrophic freshwater Beggiatoa strain was enriched in O2-H2S gradient tubes to investigate its ability to oxidize sulfide with NO3- as an alternative electron acceptor. The gradient tubes contained different NO3- concentrations, and the chemotactic response of the Beggiatoa mats was observed. The effects of the Beggiatoa sp. on vertical gradients of O2, H2S, pH, and NO3- were determined with microsensors. The more NO3- that was added to the agar, the deeper the Beggiatoa filaments glided into anoxic agar layers, suggesting that the Beggiatoa sp. used NO3- to oxidize sulfide at depths below the depth that O2 penetrated. In the presence of NO3- Beggiatoa formed thick mats (>8 mm), compared to the thin mats (ca. 0.4 mm) that were formed when no NO3- was added. These thick mats spatially separated O2 and sulfide but not NO3- and sulfide, and therefore NO3- must have served as the electron acceptor for sulfide oxidation. This interpretation is consistent with a fourfold-lower O2 flux and a twofold-higher sulfide flux into the NO3- -exposed mats compared to the fluxes for controls without NO3-. Additionally, a pronounced pH maximum was observed within the Beggiatoa mat; such a pH maximum is known to occur when sulfide is oxidized to S0 with NO3- as the electron acceptor.  相似文献   
145.
DNA damage is an early event in doxorubicin-induced cardiac myocyte death   总被引:1,自引:0,他引:1  
Anthracyclines are antitumor agents the main clinical limitation of which is cardiac toxicity. The mechanism of this cardiotoxicity is thought to be related to generation of oxidative stress, causing lethal injury to cardiac myocytes. Although protein and lipid oxidation have been documented in anthracycline-treated cardiac myocytes, DNA damage has not been directly demonstrated. This study was undertaken to determine whether anthracyclines induce cardiac myocyte DNA damage and whether this damage is linked to a signaling pathway culminating in cell death. H9c2 cardiac myocytes were treated with the anthracycline doxorubicin at clinically relevant concentrations, and DNA damage was assessed using the alkaline comet assay. Doxorubicin induced DNA damage, as shown by a significant increase in the mean tail moment above control, an effect ameliorated by inclusion of a free radical scavenger. Repair of DNA damage was incomplete after doxorubicin treatment in contrast to the complete repair observed in H2O2-treated myocytes after removal of the agent. Immunoblot analysis revealed that p53 activation occurred subsequent in time to DNA damage. By a fluorescent assay, doxorubicin induced loss of mitochondrial membrane potential after p53 activation. Chemical inhibition of p53 prevented doxorubicin-induced cell death and loss of mitochondrial membrane potential without preventing DNA damage, indicating that DNA damage was proximal in the events leading from doxorubicin treatment to cardiac myocyte death. Specific doxorubicin-induced DNA lesions included oxidized pyrimidines and 8-hydroxyguanine. DNA damage therefore appears to play an important early role in anthracycline-induced lethal cardiac myocyte injury through a pathway involving p53 and the mitochondria.  相似文献   
146.
Characterization of a divergent non-classical MHC class I gene in sharks   总被引:1,自引:0,他引:1  
Sharks are the most ancient group of vertebrates known to possess members of the major histocompatibility complex (MHC) gene family. For this reason, sharks provide a unique opportunity to gain insight into the evolution of the vertebrate immune system through comparative analysis. Two genes encoding proteins related to the MHC class I gene family were isolated from splenic cDNA derived from spiny dogfish shark ( Squalus acanthias). The genes have been designated MhcSqac-UAA*01 and MhcSqac-UAA*NC1. Comparative analysis demonstrates that the Sqac-UAA*01 protein sequence clusters with classical MHC class I of several shark species and has structural elements common to most classical MHC class I molecules. In contrast, Sqac-UAA*NC1 is highly divergent from all vertebrate classical MHC class I proteins, including the Sqac-UAA *01 sequence and those of other shark species. Although Sqac-UAA*NC1 is clearly related to the MHC class I gene family, no orthologous genes from other species were identified due to the high degree of sequence divergence. In fact, the Sqac NC1 protein sequence is the most divergent MHC class-I-like protein identified thus far in any shark species. This high degree of divergence is similar in magnitude to some of the MHC class-I-related genes found in mammals, such as MICA or CD1. These data support the existence of a class of highly divergent non-classical MHC class I genes in the most primitive vertebrates known to possess homologues of the MHC and other components of the adaptive immune system.  相似文献   
147.
Echinacea purpurea cv. Bravado and Magnus have been reported to be intermediate daylength plants (IDP) which flower in response to photoperiods between 13 and 16 h. The present experiments with E. purpurea cv. Bravado show that E. purpurea is actually a dual induction short-long-day plant which flowers promptly and consistently when grown in short day (SD) followed by long day (LD) conditions, but not with the reverse sequence of photoperiods. The flowering response increased with increasing duration of both the SD and the LD treatments. A minimum of 4 weeks of SD followed by 12 LD was required for complete flowering. No flowering occurred in continuous SD or LD, whereas a high proportion of plants flowered in continuous 14-h daylength. However, flowering was more variable in intermediate daylength than after transition from SD to LD. Furthermore, photoperiods between 13 and 16 h could satisfy both the primary SD induction and the secondary LD induction requirements. As a number of dual induction plants, both short-long-day and long-short-day plants, have such an overlapping window of effective photoperiods that can trigger both the SD and LD responses, the rationale for maintaining IDP as a separate and genuine flowering response group is seriously challenged.  相似文献   
148.
149.
Coumermycin A(1) is a member of the aminocoumarin family of antibiotics. Unlike its structural relatives, novobiocin and clorobiocin, coumermycin A(1) is a dimer built on a 3-methyl-2,4-dicarboxypyrrole scaffold and bears two decorated noviose sugar components which are the putative target binding motifs for DNA gyrase. Starting with this scaffold, we have utilized the ligase CouL for mono- and bisamide formation with aminocoumarins to provide substrates for the glycosyltransferase CouM. CouM was subsequently shown to catalyze mono- and bisnoviosylation of the resulting CouL products. CouP was shown to possess 4'-O-methyltransferase activity on products from tandem CouL, CouM assays. A fourth enzyme, NovN, the 3'-O-carbamoyltransferase from the novobiocin operon, was then able to carbamoylate either or both arms of the CouP product. The tandem action of CouL, CouM, CouP, and NovN thus generates a biscarbamoyl analogue of the pseudodimer coumermycin A(1). Starting from alternative dicarboxy scaffolds, these four enzymes can be utilized in tandem to create additional variants of dimeric aminocoumarin antibiotics.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号