首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92509篇
  免费   6726篇
  国内免费   6388篇
  105623篇
  2024年   201篇
  2023年   1254篇
  2022年   2940篇
  2021年   4869篇
  2020年   3193篇
  2019年   4017篇
  2018年   3956篇
  2017年   2866篇
  2016年   4052篇
  2015年   5842篇
  2014年   6886篇
  2013年   7248篇
  2012年   8492篇
  2011年   7736篇
  2010年   4482篇
  2009年   4186篇
  2008年   4775篇
  2007年   4146篇
  2006年   3532篇
  2005年   2820篇
  2004年   2312篇
  2003年   2105篇
  2002年   1698篇
  2001年   1471篇
  2000年   1342篇
  1999年   1407篇
  1998年   819篇
  1997年   892篇
  1996年   813篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   682篇
  1991年   535篇
  1990年   455篇
  1989年   331篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   124篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Human embryos of in vitro fertilization (IVF) are often susceptible to developmental arrest,which greatly reduces the efficiency of IVF treatment.In recent year...  相似文献   
992.
993.
994.
The pathogenesis of age-related hearing loss (ARHL) remains unclear. OPA1 is the sole fusion protein currently known to be situated in the inner mitochondrial membrane, which is pivotal for maintaining normal mitochondrial function. While it has already been demonstrated that mutations in OPA1 may lead to hereditary deafness, its involvement in the occurrence and development of ARHL has not been previously explored. In our study, we constructed D-gal-induced senescent HEI-OC1 cells and the cochlea of C57BL/6J mice with a mutated SUMOylation site of SIRT3 using CRISPR/Cas9 technology. We found enhanced L-OPA1 processing mediated by activated OMA1, and increased OPA1 acetylation resulting from reductions in SIRT3 levels in senescent HEI-OC1 cells. Consequently, the fusion function of OPA1 was inhibited, leading to mitochondrial fission and pyroptosis in hair cells, ultimately exacerbating the aging process of hair cells. Our results suggest that the dysregulation of mitochondrial dynamics in cochlear hair cells in aged mice can be ameliorated by activating the SIRT3/OPA1 signaling. This has the potential to alleviate the senescence of cochlear hair cells and reduce hearing loss in mice. Our study highlights the significant roles played by the quantities of long and short chains and the acetylation activity of OPA1 in the occurrence and development of ARHL. This finding offers new perspectives and potential targets for the prevention and treatment of ARHL.  相似文献   
995.
996.
Skin aging is characterized by changes in its structural, cellular, and molecular components in both the epidermis and dermis. Dermal aging is distinguished by reduced dermal thickness, increased wrinkles, and a sagging appearance. Due to intrinsic or extrinsic factors, accumulation of excessive reactive oxygen species (ROS) triggers a series of aging events, including imbalanced extracellular matrix (ECM) homeostasis, accumulation of senescent fibroblasts, loss of cell identity, and chronic inflammation mediated by senescence-associated secretory phenotype (SASP). These events are regulated by signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mechanistic target of rapamycin (mTOR), transforming growth factor beta (TGF-β), and insulin-like growth factor 1 (IGF-1). Senescent fibroblasts can induce and accelerate age-related dysfunction of other skin cells and may even cause systemic inflammation. In this review, we summarize the role of dermal fibroblasts in cutaneous aging and inflammation. Moreover, the underlying mechanisms by which dermal fibroblasts influence cutaneous aging and inflammation are also discussed.  相似文献   
997.
Three new neutral and ionic phosphorescent iridium(III) complexes were successfully prepared using 1-(6-methoxynaphthalen-2-yl)isoquinoline as the main ligand, while the auxiliary ligand was 2-(2-1H-imidazolyl)pyridine. Three complexes (Ir1, Ir2, Ir3) showed red emission, peaking at 610, 609, and 615 nm, respectively, and they exhibited good solubility and excellent photophysical properties in different solvents, which is suitable to prepare organic light-emitting diodes (OLEDs) by solution method. Among the three OLEDs prepared by iridium(III) complexes using the solution method, the device based on Ir2 possessed better electroluminescent properties, and its maximum brightness, current efficiency (CE), power efficiency (PE), and the maximum external quantum efficiency (EQE) were 507.2 cd m−2, 0.14 cd A−1, 0.06 lm W−1, and 0.14%. respectively, proving that the three complexes have a certain of potential for OLEDs applications and are expected to expand the applications of iridium(III) complexes for OLEDs.  相似文献   
998.
Achieving high-performance in all-small-molecule organic solar cells (ASM-OSCs) significantly relies on precise nanoscale phase separation through domain size manipulation in the active layer. Nonetheless, for ASM-OSC systems, forging a clear connection between the tuning of domain size and the intricacies of phase separation proves to be a formidable challenge. This study investigates the intricate interplay between domain size adjustment and the creation of optimal phase separation morphology, crucial for ASM-OSCs’ performance. It is demonstrated that exceptional phase separation in ASM-OSCs’ active layer is achieved by meticulously controlling the continuity and uniformity of domains via re-packing process. A series of halogen-substituted solvents (Fluorobenzene, Chlorobenzene, Bromobenzene, and Iodobenzene) is adopted to tune the re-packing kinetics, the ASM-OSCs treated with CB exhibited an impressive 16.2% power conversion efficiency (PCE). The PCE enhancement can be attributed to the gradual crystallization process, promoting a smoothly interconnected and uniformly distributed domain size. This, in turn, leads to a favorable phase separation morphology, enhanced charge transfer, extended carrier lifetime, and consequently, reduced recombination of free charges. The findings emphasize the pivotal role of re-packing kinetics in achieving optimal phase separation in ASM-OSCs, offering valuable insights for designing high-performance ASM-OSCs fabrication strategies.  相似文献   
999.
Developing advanced electrochemical energy storage and conversion (ESC) technologies based on renewable clean energy can alleviate severe global environmental pollution and energy crisis. The efficient preparation of functional electrode materials via a simple, green, and safe synthesis process is the key to the commercial feasibility of these ESC systems. Deep eutectic solvents (DESs) with easy-tunable solvent properties and recyclable features have emerged as novel solvent systems for designing and synthesizing various functional powder materials for ESC devices. In this paper, the application of DESs in the synthesis of energy-related functional powder materials is systematically reviewed. After briefly introducing the classification and synthesis of DESs, their critical roles in synthesizing powder materials are discussed. Then, the recent advances of DES-derived powder materials in ESC, including batteries, fuel cells, supercapacitors, and water splitting, are described in detail from the perspective of preparation-structure-activity. Finally, some challenges and development directions of the DESs-mediated synthesis of powder materials with high electrochemical performance for ESC applications are outlined.  相似文献   
1000.
The practical use of Zn metal anodes in aqueous zinc batteries is impeded by the growth of dendrites, anode corrosion, and hydrogen evolution reaction in aqueous electrolytes. In this study, a simple, energy-efficient, and scalable approach is reported to mitigate these detrimental issues effectively. Using 1-hexanethiol (HT), a hydrophobic self-assembled mercaptan layer (SAML) with a highly ordered structure is in situ created on the surface of the Zn anode. This ultrathin interfacial structure guides uniform Zn deposition and shields the Zn anode from water and oxygen-induced corrosion, thus effectively inhibiting dendrite formation and side reactions. Consequently, the HT-Zn electrode showcases impressive electrochemical stability and reversibility, and the as-assembled HT-Zn||I2 full cell delivers increased specific capacity (from 112 to 155 mAh g−1 at 1 A g−1) and ultra-stable cyclability (zero capacity decay during the extended 1500 cycles at 4 A g−1). To validate the effectiveness of this simple and scalable method, a large-sized pouch cell is prepared, which can be stably operated for 1000 cycles with a capacity decay of merely 0.0098% per cycle and Coulombic efficiency exceeding 99.1%. The presented SAML strategy highlights the potential of molecular engineering in improving the performance of aqueous zinc batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号