首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1217篇
  免费   71篇
  国内免费   1篇
  1289篇
  2024年   2篇
  2023年   4篇
  2022年   12篇
  2021年   25篇
  2020年   15篇
  2019年   16篇
  2018年   35篇
  2017年   23篇
  2016年   35篇
  2015年   61篇
  2014年   82篇
  2013年   83篇
  2012年   91篇
  2011年   89篇
  2010年   48篇
  2009年   61篇
  2008年   72篇
  2007年   89篇
  2006年   47篇
  2005年   55篇
  2004年   55篇
  2003年   49篇
  2002年   37篇
  2001年   28篇
  2000年   31篇
  1999年   22篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1993年   2篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   16篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1973年   2篇
  1971年   3篇
  1970年   1篇
  1965年   2篇
  1934年   1篇
排序方式: 共有1289条查询结果,搜索用时 15 毫秒
71.
Inhibitor of DNA binding 1 (Id1) is a basic helix-loop-helix (bHLH) protein that has a variety of functional roles in cellular events including differentiation, cell cycle and cancer development. In addition, it has been demonstrated that Id1 is related with TGF-β and Smad signaling in various biological conditions. In this study, we investigated the effect of Id1 on TGF-β-induced collagen expression in human dermal fibroblasts. When Id1-b isoform was overexpressed, TGF-β-induced collagen expression was markedly inhibited. Consistent with this result, Id1-b significantly inhibited TGF-β-induced collagen gel contraction. In addition, Id1-b inhibited TGF-β-induced phosphorylation of Smad2 and Smad3. Finally, immunohistochemistry showed that Id1 expression was decreased in fibrotic skin diseases while TGF-β signaling was increased. Together, these results suggest that Id1 is an inhibitory regulator on TGF-β-induced collagen expression in dermal fibroblasts.  相似文献   
72.
The human Z-type α1-antitrypsin variant has a strong tendency to accumulate folding intermediates due to extremely slow protein folding within the endoplasmic reticulum (ER) of hepatocytes. Human α1-antitrypsin has 17 peptidyl-prolyl bonds per molecule; thus, the effect of peptidyl-prolyl isomerases on Z-type α1-antitrypsin protein folding was analyzed in this study. The protein level of Cpr2p, a yeast ER peptidyl-prolyl isomerase, increased more than two-fold in Z-type α1-antitrypsin-expressing yeast cells compared to that in wild-type α1-antitrypsin-expressing cells. When CPR2 was deleted from the yeast genome, the cytotoxicity of Z-type α1-antitrypsin increased significantly. The interaction between Z-type α1-antitrypsin and Cpr2p was confirmed by co-immunoprecipitation. In vitro folding assays showed that Cpr2p facilitated Z-type α1-antitrypsin folding into the native state. Furthermore, Cpr2p overexpression significantly increased the extracellular secretion of Z-type α1-antitrypsin. Our results indicate that ER peptidyl-prolyl isomerases may rescue Z-type α1-antitrypsin molecules from retarded folding and eventually relieve clinical symptoms caused by this pathological α1-antitrypsin.  相似文献   
73.
Lipid-linked oligosaccharides (LLOs) are the substrates of oligosaccharyltransferase (OST), the enzyme that catalyzes the en bloc transfer of the oligosaccharide onto the acceptor asparagine of nascent proteins during the process of N-glycosylation. To explore LLOs’ preferred location, orientation, structure, and dynamics in membrane bilayers of three different lipid types (dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and dioleoylphosphatidylcholine), we have modeled and simulated both eukaryotic (Glc3-Man9-GlcNAc2-PP-Dolichol) and bacterial (Glc1-GalNAc5-Bac1-PP-Undecaprenol) LLOs, which are composed of an isoprenoid moiety and an oligosaccharide, linked by pyrophosphate. The simulations show no strong impact of different bilayer hydrophobic thicknesses on the overall orientation, structure, and dynamics of the isoprenoid moiety and the oligosaccharide. The pyrophosphate group stays in the bilayer head group region. The isoprenoid moiety shows high flexibility inside the bilayer hydrophobic core, suggesting its potential role as a tentacle to search for OST. The oligosaccharide conformation and dynamics are similar to those in solution, but there are preferred interactions between the oligosaccharide and the bilayer interface, which leads to LLO sugar orientations parallel to the bilayer surface. Molecular docking of the bacterial LLO to a bacterial OST suggests that such orientations can enhance binding of LLOs to OST.  相似文献   
74.
The outer membrane of Gram-negative bacteria is a unique asymmetric lipid bilayer composed of phospholipids (PLs) in the inner leaflet and lipopolysaccharides (LPSs) in the outer leaflet. Its function as a selective barrier is crucial for the survival of bacteria in many distinct environments, and it also renders Gram-negative bacteria more resistant to antibiotics than their Gram-positive counterparts. Here, we report the structural properties of a model of the Escherichia coli outer membrane and its interaction with outer membrane phospholipase A (OmpLA) utilizing molecular dynamics simulations. Our results reveal that given the lipid composition used here, the hydrophobic thickness of the outer membrane is ∼3 Å thinner than the corresponding PL bilayer, mainly because of the thinner LPS leaflet. Further thinning in the vicinity of OmpLA is observed due to hydrophobic matching. The particular shape of the OmpLA barrel induces various interactions between LPS and PL leaflets, resulting in asymmetric thinning around the protein. The interaction between OmpLA extracellular loops and LPS (headgroups and core oligosaccharides) stabilizes the loop conformation with reduced dynamics, which leads to secondary structure variation and loop displacement compared to that in a DLPC bilayer. In addition, we demonstrate that the LPS/PL ratios in asymmetric bilayers can be reliably estimated by the per-lipid surface area of each lipid type, and there is no statistical difference in the overall membrane structure for the outer membranes with one more or less LPS in the outer leaflet, although individual lipid properties vary slightly.  相似文献   
75.
Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported.  相似文献   
76.
We report the purification and crystallization of phosphoglycerate kinase from Thermus caldophilus (Tca). The enzyme crystallizes in the P2(1)2(1)2(1) space group (cell dimensions a = 65.1, b = 71.3, c = 80.2 A), with one molecule in the asymmetric unit. A complete set of diffraction data was collected from an orthorhombic crystal up to 1.8 A resolution.  相似文献   
77.
78.
Cho DI  Koo NY  Chung WJ  Kim TS  Ryu SY  Im SY  Kim KM 《Life sciences》2002,71(17):2071-2082
NF-kappaB that plays an important role in iNOS expression is one of the targets of various potential anti-inflammatory agents including resveratrol. Resveratrol contains a structural similarity with estrogen, and there has been speculation about resveratrol as estrogen agonist. In this study, the mechanism and structural requirements of resveratrol and related hydroxystilbenes for the inhibition of LPS-induced nitric oxide production were studied in macrophage cells (RAW 264.7 and J774) by comparing its effect on LPS-induced NF-kappaB translocation and nitric oxide production, and by considering the possibility of involvement of an estrogen receptor. LPS-induced nitric oxide production was inhibited only when cells were treated with resveratrol prior to stimulation with LPS, suggesting that resveratrol does not affect the enzyme itself. A higher concentration of resveratrol than needed for the inhibition of nitric oxide production was required for the inhibition of NF-kappaB mobilization or iNOS expression. Estrogen and diethylstilbesterol, an estrogen agonist, caused only weak inhibition of nitric oxide production, and the effects of resveratrol were not noticeably blocked by ICI-182780, an estrogen antagonist. Structure-activity analysis of resveratrol and nine hydroxystilbenes suggests that the structural balance between oxygen functional groups on the benzene rings is important for their activity. Our results suggest that resveratrol might act on other cellular targets as well as NF-kappaB at the initial stage of gene expression. Unique structural features of hydroxystilbenes are needed for suppression of nitric oxide production and it is unlikely that estrogen receptor is involved in it.  相似文献   
79.
Increasing its root to shoot ratio is a plant strategy for restoring water homeostasis in response to the long-term imposition of mild water stress. In addition to its important role in diverse fundamental processes, indole-3-acetic acid (IAA) is involved in root growth and development. Recent extensive characterizations of the YUCCA gene family in Arabidopsis and rice have elucidated that member’s function in a tryptophan-dependent IAA biosynthetic pathway. Through forward- and reverse-genetics screening, we have isolated Tos17 and T-DNA insertional rice mutants in a CONSTITUTIVELY WILTED1 (COW1) gene, which encodes a new member of the YUCCA protein family. Homozygous plants with either a Tos17 or T-DNA-inserted allele of OsCOW1 exhibit phenotypes of rolled leaves, reduced leaf widths, and lower root to shoot ratios. These phenotypes are evident in seedlings as early as 7–10 d after germination, and remain until maturity. When oscow1 seedlings are grown under low-intensity light and high relative humidity, the rolled-leaf phenotype is greatly alleviated. For comparison, in such conditions, the transpiration rate for WT leaves decreases approx. 5- to 10-fold, implying that this mutant trait results from wilting rather than being a morphogenic defect. Furthermore, a lower turgor potential and transpiration rate in their mature leaves indicates that oscow1 plants are water-deficient, due to insufficient water uptake that possibly stems from that diminished root to shoot ratio. Thus, our observations suggest that OsCOW1-mediated IAA biosynthesis plays an important role in maintaining root to shoot ratios and, in turn, affects water homeostasis in rice.  相似文献   
80.
Gram-negative bacteria use a needle-like protein assembly, the type III secretion apparatus, to inject virulence factors into target cells to initiate human disease. The needle is formed by the polymerization of approximately 120 copies of a small acidic protein that is conserved among diverse pathogens. We previously reported the structure of the BsaL needle monomer from Burkholderia pseudomallei by nuclear magnetic resonance (NMR) spectroscopy and others have determined the crystal structure of the Shigella flexneri MxiH needle. Here, we report the NMR structure of the PrgI needle protein of Salmonella typhimurium, a human pathogen associated with food poisoning. PrgI, BsaL, and MxiH form similar two helix bundles, however, the electrostatic surfaces of PrgI differ radically from those of BsaL or MxiH. In BsaL and MxiH, a large negative area is on a face formed by the helix alpha1-alpha2 interface. In PrgI, the major negatively charged surface is not on the "face" but instead is on the "side" of the two-helix bundle, and only residues from helix alpha1 contribute to this negative region. Despite being highly acidic proteins, these molecules contain large basic regions, suggesting that electrostatic contacts are important in needle assembly. Our results also suggest that needle-packing interactions may be different among these bacteria and provide the structural basis for why PrgI and MxiH, despite 63% sequence identity, are not interchangeable in S. typhimurium and S. flexneri.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号