首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10497篇
  免费   776篇
  国内免费   11篇
  11284篇
  2023年   44篇
  2022年   135篇
  2021年   205篇
  2020年   153篇
  2019年   188篇
  2018年   260篇
  2017年   215篇
  2016年   384篇
  2015年   604篇
  2014年   628篇
  2013年   706篇
  2012年   921篇
  2011年   842篇
  2010年   566篇
  2009年   492篇
  2008年   687篇
  2007年   615篇
  2006年   557篇
  2005年   477篇
  2004年   498篇
  2003年   408篇
  2002年   329篇
  2001年   171篇
  2000年   150篇
  1999年   137篇
  1998年   72篇
  1997年   65篇
  1996年   49篇
  1995年   38篇
  1994年   31篇
  1993年   28篇
  1992年   53篇
  1991年   44篇
  1990年   33篇
  1989年   41篇
  1988年   41篇
  1987年   40篇
  1986年   39篇
  1985年   29篇
  1984年   28篇
  1983年   23篇
  1982年   22篇
  1981年   22篇
  1980年   20篇
  1979年   21篇
  1977年   14篇
  1976年   11篇
  1975年   25篇
  1974年   19篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The purpose of this study was to evaluate the diagnostic value of magnetic resonance imaging (MRI) and assess the correlation between the volume of the ischemic lesion and neurobehavioral status during the subacute stage of ischemic stroke. Ischemic stroke was induced in 6 healthy laboratory beagles through permanent occlusion of the middle cerebral artery (MCAO). T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging, diffusion-weighted imaging (DWI), measurement of the apparent diffusion coefficient (ADC) ratio, and neurobehavioral evaluation were performed 3 times serially by using a 1.5-T MR system: before and 3 and 10 d after MCAO. Ischemic lesions demonstrated T2 hyperintensity, FLAIR hyperintensity, and DWI hyperintensity. The ADC ratio was decreased initially but then was increased at 10 d after MCAO. Ischemic lesion volumes on T2-weighted and FLAIR imaging were not significantly different from those on DWI. The lesion volume and neurobehavioral score showed strong correlation. Our results suggest that conventional MRI may be a reliable diagnostic tool during the subacute stage of canine ischemic stroke.Abbreviations: ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; MCAO, middle cerebral artery occlusion; MRI, magnetic resonance imaging; PWI, perfusion-weighted imagingIn human medicine, stroke is a leading cause of adult mortality and neurologic disability worldwide.1 Strokes previously were thought to be uncommon in small animals, but the true prevalence is unknown.4 These events are now recognized more frequently in dogs because of increased use of magnetic resonance imaging (MRI).5,14,17Because the infusion of thrombolytic agents, such as urokinase or tissue plasminogen activator, within 3 to 6 h of the onset symptoms is effective in restoring blood flow and improving stroke outcome in humans,19 the detection of early ischemic changes is now thought to be necessary to improve patient outcome. Computed tomography and conventional MRI are not sufficiently sensitive to predict the presence and extent of ischemic damage during the acute stage after a stroke.12,20 Therefore several MRI sequences, such as fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and MR angiography, have been developed for early diagnosis and subsequent follow-up of ischemic stroke.3 High-field magnetic strengths (at least 1.5 T) are necessary to perform these sequences.In contrast to the situation in humans, ischemic stroke in many dogs is diagnosed during the subacute stage—24 h to 6 wk after the vascular insult—due to the time lag between the onset of clinical signs to referral and to the lack of standard diagnostic protocols for ischemic stroke in dogs. In most reports of strokes in dogs, the median interval between the onset of neurologic dysfunction and performance of an MRI was more than 2 d.5,14,17 Whereas DWI has marked sensitivity to very early ischemic changes in the brain, T2-weighted and FLAIR images gradually become more hyperintense later (that is, during the first 24 h after the insult).3 Therefore, hyperintensity on T2-weighted and FLAIR images is believed to be representative of mature lesions.15 In light of these findings, we hypothesized that conventional MR sequences, such as T2-weighted and FLAIR imaging as well as DWI would be used for the diagnosis of the subacute stage of ischemic stroke in dogs.The purpose of this study was to evaluate the diagnostic value of MRI and assess the correlation between the volume of ischemic lesions and neurobehavioral status during the subacute stage of ischemic stroke in dogs. We therefore investigated the lesion volume of T2-weighted and FLAIR images compared with that on DWI images. Furthermore, we assessed the relationship between the apparent diffusion coefficient (ADC) of the ischemic lesions and the neurobehavioral status of the dogs.  相似文献   
62.
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.  相似文献   
63.
We previously demonstrated caspase-mediated cleavage of p130cas during apoptosis and identified two caspase-3 cleavage sites [1]. In this study, we investigated the phosphorylation-dependent cleavage of p130cas in apoptotic Rat-1 fibroblast cells. Lysophosphatidic acid and fibronectin induced p130cas phosphorylation, which in turn resulted in resistance to caspase-mediated cleavage. Alternatively, dephosphorylation by calf intestinal alkaline phosphatase, PP1, and LAR stimulated cleavage of p130cas by caspase-3, generating a 31-kDa fragment. During apoptosis, p130cas dephosphorylation seems to precede its cleavage. The phosphorylation of tyrosine and serine residues immediately adjacent to the two cleavage sites (DVPD(416) and DSPD(748)) strongly affected p130cas cleavage by caspase-3, both in vitro and in vivo. Furthermore, the generation of the 31-kDa cleavage fragment was strongly regulated by phosphorylation of a tyrosine residue at position 751 (DSPD(748) and GQY(751)). Our results collectively suggest that degradation of p130cas during apoptosis is modulated in a phosphorylation-dependent manner.  相似文献   
64.
In inflamed joints of rheumatoid arthritis, PGE(2) is highly expressed, and IL-10 and IL-6 are also abundant. PGE(2) is a well-known activator of the cAMP signaling pathway, and there is functional cross-talk between cAMP signaling and the Jak-STAT signaling pathway. In this study, we evaluated the modulating effect of PGE(2) on STAT signaling and its biological function induced by IL-10 and IL-6, and elucidated its mechanism in THP-1 cells. STAT phosphorylation was determined by Western blot, and gene expression was analyzed using real-time PCR. Pretreatment with PGE(2) significantly augmented IL-10-induced STAT3 and STAT1 phosphorylation, as well as suppressors of cytokine signaling 3 (SOCS3) and IL-1R antagonist gene expression. In contrast, PGE(2) suppressed IL-6-induced phosphorylation of STAT3 and STAT1. These PGE(2)-induced modulating effects were largely reversed by actinomycin D. Pretreatment with dibutyryl cAMP augmented IL-10-induced, but did not change IL-6-induced STAT3 phosphorylation. Misoprostol, an EP2/3/4 agonist, and butaprost, an EP2 agonist, augmented IL-10-induced STAT3 phosphorylation and SOCS3 gene expression, but sulprostone, an EP1/3 agonist, had no effect. H89, a protein kinase A inhibitor, and LY294002, a PI3K inhibitor, diminished PGE(2)-mediated augmentation of IL-10-induced STAT3 phosphorylation. In this study, we found that PGE(2) selectively regulates cytokine signaling via increased intracellular cAMP levels and de novo gene expression, and these modulating effects may be mediated through EP2 or EP4 receptors. PGE(2) may modulate immune responses by alteration of cytokine signaling in THP-1 cells.  相似文献   
65.
The production and secretion of streptokinase using OmpA signal sequence in E. coli was enhanced by removing the 13 N-terminal amino acids (SK(N13). The secretion level of SK(N13 protein into the extracellular medium was two times higher than that of wild-type streptokinase. About 4500 IU of SK(N13 protein per 1 ml LB-ampicillin medium was secreted into extracellular medium at 12 hours after induction. Fully active and enhanced extracellular preparation of the mutant streptokinase may be a potential alternative source for the simple downstream processing  相似文献   
66.
67.
The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.  相似文献   
68.
69.
The sexual differentiation of Schizosaccharomyces pombe is controlled by many cellular components which have not been fully characterized. We isolated a gene called msa2 as a multi-copy suppressor of a sporulation abnormal mutant (sam1). Msa2p is identical with Nrd1p which has been characterized as a factor that blocks the onset of sexual differentiation. The yeast two-hybrid system was used to identify Cpc2p, a fission yeast homolog of the RACK1 protein, that interacted with Msa2p/Nrd1p. We confirmed that Msa2p/Nrd1p interacted with Cpc2p in S. pombe cells. An epistatic analysis of msa2/nrd1 and cpc2 suggests that Msa2p/Nrd1p was an upstream regulator for Cpc2p. A localization analysis of Cpc2p and Msa2p/Nrd1p indicates that both proteins were predominantly localized in the cytoplasm. The interaction of negative regulator Msa2p/Nrd1p with positive regulator Cpc2p suggests a new regulatory circuit in the sexual differentiation of S. pombe.  相似文献   
70.
The CC chemokine receptor 7 (CCR7) and cognate CCR7 ligands, CCL19 and CCL21, help establish microenvironments in lymphoid tissue that can facilitate encounters between naive T cells and mature dendritic cells (DCs). This study was conducted to determine if CCR7 ligands can augment the immunogenicity of a DNA vaccine that expresses glycoprotein B (gB) of the pseudorabies virus (PrV). The genetic co-transfer of CCR7 ligands along with a PrV DNA vaccine increased the levels of serum PrV-specific immunoglobulin (Ig) G by 2- to 2.5-fold. In addition, the level of PrV-specific IgG2a isotype was significantly enhanced by co-injection of CCR7 ligand DNA, which indicates that CCR7 ligand biases the humoral immunity toward the Th1-type pattern. The co-injection of CCR7 ligand DNA consistently enhanced the level of Th1-type cytokines (IL-2 and IFN-gamma) produced by stimulated immune cells when compared with a group that was vaccinated with the PrV DNA vaccine. Also, the genetic co-transfer of CCR7 ligand DNAs with PrV DNA vaccine provided prolonged survival against a virulent challenge by PrV. Moreover, the co-administration of CCR7 ligand DNA increased the number of mature DCs into the secondary lymphoid tissues, which appeared to enhance the proliferation of PrV-immune CD4(+) T cells. Taken together, these findings indicate that CCR7 ligands are an attractive adjuvant for a PrV DNA vaccine that can offer protective immunity against the PrV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号