首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   19篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   8篇
  2013年   10篇
  2012年   14篇
  2011年   9篇
  2010年   5篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   6篇
  2003年   9篇
  2002年   7篇
  2001年   11篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1968年   1篇
  1910年   2篇
  1907年   2篇
  1906年   2篇
排序方式: 共有202条查询结果,搜索用时 750 毫秒
61.
Some observations on variant strains of Myxococcus virescens B2 with special emphasis on characteristics associated with the ability to grow in dispersion are reported. The isolated strains were divided into two major classes according to their mode of growth in shaken and static liquid cultures based on casitone and casamino acids media. Strains growing in dispersion were designated D+-strains and those growing in aggregates or as films, D?-strains. Colony morphology, cell morphology, growth in liquid and on solid medium and morphogenesis were compared. The ability to grow in dispersion shown by D+-strains seemed to be associated with a smooth colony on casitone agar, inability to form typical fruiting bodies and a low linear growth rate of colonies on solid medium as compared with the D?-strains. In contrast D?-strains produced rough colonies on casitone agar, were able to fruit and evidently formed an adhesive slime in the form of fibrils extending from the cell surface. It is suggested that the observed differences depend on different envelopes of the cells in the two classes.  相似文献   
62.
Microhexura montivaga is a miniature tarantula‐like spider endemic to the highest peaks of the southern Appalachian mountains and is known only from six allopatric, highly disjunct montane populations. Because of severe declines in spruce‐fir forest in the late 20th century, M. montivaga was formally listed as a US federally endangered species in 1995. Using DNA sequence data from one mitochondrial and seven nuclear genes, patterns of multigenic genetic divergence were assessed for six montane populations. Independent mitochondrial and nuclear discovery analyses reveal obvious genetic fragmentation both within and among montane populations, with five to seven primary genetic lineages recovered. Multispecies coalescent validation analyses [guide tree and unguided Bayesian Phylogenetics and Phylogeography (BPP), Bayes factor delimitation (BFD)] using nuclear‐only data congruently recover six or seven distinct lineages; BFD analyses using combined nuclear plus mitochondrial data favour seven or eight lineages. In stark contrast to this clear genetic fragmentation, a survey of secondary sexual features for available males indicates morphological conservatism across montane populations. While it is certainly possible that morphologically cryptic speciation has occurred in this taxon, this system may alternatively represent a case where extreme population genetic structuring (but not speciation) leads to an oversplitting of lineage diversity by multispecies coalescent methods. Our results have clear conservation implications for this federally endangered taxon and illustrate a methodological issue expected to become more common as genomic‐scale data sets are gathered for taxa found in naturally fragmented habitats.  相似文献   
63.
64.
65.
α-Helical membrane proteins are important for many biological functions. Due to physicochemical constraints, the structures of membrane proteins differ from the structure of soluble proteins. Historically, membrane protein structures were assumed to be more or less two-dimensional, consisting of long, straight, membrane-spanning parallel helices packed against each other. However, during the past decade, a number of the new membrane protein structures cast doubt on this notion. Today, it is evident that the structures of many membrane proteins are equally complex as for many soluble proteins. Here, we review this development and discuss the consequences for our understanding of membrane protein biogenesis, folding, evolution, and bioinformatics.  相似文献   
66.

Background

The California Floristic Province is a biodiversity hotspot, reflecting a complex geologic history, strong selective gradients, and a heterogeneous landscape. These factors have led to high endemic diversity across many lifeforms within this region, including the richest diversity of mygalomorph spiders (tarantulas, trapdoor spiders, and kin) in North America. The trapdoor spider genus Aliatypus encompasses twelve described species, eleven of which are endemic to California. Several Aliatypus species show disjunct distributional patterns in California (some are found on both sides of the vast Central Valley), and the genus as a whole occupies an impressive variety of habitats.

Methodology/Principal Findings

We collected specimens from 89 populations representing all described species. DNA sequence data were collected from seven gene regions, including two newly developed for spider systematics. Bayesian inference (in individual gene tree and species tree approaches) recovered a general “3 clade” structure for the genus (A. gulosus, californicus group, erebus group), with three other phylogenetically isolated species differing slightly in position across different phylogenetic analyses. Because of extremely high intraspecific divergences in mitochondrial COI sequences, the relatively slowly evolving 28S rRNA gene was found to be more useful than mitochondrial data for identification of morphologically indistinguishable immatures. For multiple species spanning the Central Valley, explicit hypothesis testing suggests a lack of monophyly for regional populations (e.g., western Coast Range populations). Phylogenetic evidence clearly shows that syntopy is restricted to distant phylogenetic relatives, consistent with ecological niche conservatism.

Conclusions/Significance

This study provides fundamental insight into a radiation of trapdoor spiders found in the biodiversity hotspot of California. Species relationships are clarified and undescribed lineages are discovered, with more geographic sampling likely to lead to additional species diversity. These dispersal-limited taxa provide novel insight into the biogeography and Earth history processes of California.  相似文献   
67.
Spider diversity is partitioned into three primary clades, namely Mesothelae, Mygalomorphae, and Araneomorphae. Mygalomorph cytogenetics is largely unknown. Our study revealed a remarkable karyotype diversity of mygalomorphs. Unlike araneomorphs, they show no general trend towards a decrease of 2n, as the chromosome number was reduced in some lineages and increased in others. A biarmed karyotype is a symplesiomorphy of mygalomorphs and araneomorphs. Male meiosis of some mygalomorphs is achiasmatic, or includes the diffuse stage. The sex chromosome system X1X20, which is supposedly ancestral in spiders, is uncommon in mygalomorphs. Many mygalomorphs exhibit more than two (and up to 13) X chromosomes in males. The evolution of X chromosomes proceeded via the duplication of chromosomes, fissions, X–X, and X‐autosome fusions. Spiders also exhibit a homomorphic sex chromosome pair. In the germline of mygalomorph males these chromosomes are often deactivated; their deactivation and pairing is initiated already at spermatogonia. Remarkably, pairing of sex chromosomes in mygalomorph females is also initiated at gonial cells. Some mygalomorphs have two sex chromosome pairs. The second pair presumably arose in early‐diverging mygalomorphs, probably via genome duplication. The unique behaviour of spider sex chromosomes in the germline may promote meiotic pairing of homologous sex chromosomes and structural differentiation of their duplicates, as well as the establishment of polyploid genomes. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 377–408.  相似文献   
68.
69.
Arterial smooth muscle cells grown in primary culture on a substrate of fibronectin in serum-free medium are converted from a contractile to a synthetic phenotype. This process is dependent on integrin signaling and includes a major structural reorganization with loss of myofilaments and formation of a large secretory apparatus. Functionally, the cells lose their contractility and become competent to migrate, secrete extracellular matrix components, and proliferate in response to growth factor stimulation. Here, it is demonstrated that the mitogen-activated protein kinases ERK1/2 play a vital role in the fibronectin-mediated modification of rat aortic smooth muscle cells. Immunoblotting showed that phosphorylated ERK1/2 (p44/p42) were expressed throughout the period when the change in phenotypic properties of the cells took place. Moreover, phosphorylated ERK1/2 accumulated in the nucleus as revealed by immunocytochemical staining. Additional support for an active role of ERK1/2 in the shift in smooth muscle phenotype was obtained by the finding that PD98059, an inhibitor of the upstream kinase MEK1, potently suppressed both the expression of phosphorylated ERK1/2 and the fine structural rebuilding of the cells. In conclusion, the observations point to an important and multifaceted role of ERK1/2 in the regulation of differentiated properties and growth of vascular smooth muscle cells.  相似文献   
70.
Inorganic nitrogen losses from many unpolluted mature tropical forests are over an order of magnitude higher than losses from analogous temperate forests. This pattern could either reflect a lack of N limitation or accelerated plant-soil N cycling under tropical temperatures and moisture. We used a simple analytical framework of the N cycle and compared our predictions with data of N in stream waters of temperate and tropical rainforests. While the pattern could be explained by differences in N limitation, it could not be explained based on up-regulation of the internal N cycle without invoking the unlikely assumption that tropical plants are two to four times less efficient at taking up N than temperate plants. Our results contrast with the idea that a tropical climate promotes and sustains an up-regulated and leaky - but N-limited - internal N cycle. Instead, they are consistent with the notion that many tropical rainforests exist in a state of N saturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号