首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   71篇
  769篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   16篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2017年   17篇
  2016年   33篇
  2015年   32篇
  2014年   48篇
  2013年   42篇
  2012年   67篇
  2011年   58篇
  2010年   51篇
  2009年   34篇
  2008年   61篇
  2007年   47篇
  2006年   36篇
  2005年   41篇
  2004年   32篇
  2003年   37篇
  2002年   18篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   2篇
排序方式: 共有769条查询结果,搜索用时 15 毫秒
71.
ClC chloride channels are widely distributed in organisms across the evolutionary spectrum, and members of the mammalian family play crucial roles in cellular function and are mutated in several human diseases (Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. (2002) Physiol. Rev. 82, 503-568). Within the ClC-3, -4, -5 branch of the family that are intracellular channels, two alternatively spliced ClC-3 isoforms were recognized recently (Ogura, T., Furukawa, T., Toyozaki, T., Yamada, K., Zheng, Y. J., Katayama, Y., Nakaya, H., and Inagaki, N. (2002) FASEB J. 16, 863-865). ClC-3A resides in late endosomes where it serves as an anion shunt during acidification. We show here that the ClC-3B PDZ-binding isoform resides in the Golgi where it co-localizes with a small amount of the other known PDZ-binding chloride channel, CFTR (cystic fibrosis transmembrane conductance regulator). Both channel proteins bind the Golgi PDZ protein, GOPC (Golgi-associated PDZ and coiled-coil motif-containing protein). Interestingly, however, when overexpressed, GOPC, which is thought to influence traffic in the endocytic/secretory pathway, causes a large reduction in the amounts of both channels, probably by leading them to the degradative end of this pathway. ClC-3B as well as CFTR also binds EBP50 (ERM-binding phosphoprotein 50) and PDZK1, which are concentrated at the plasma membrane. However, only PDZK1 was found to promote interaction between the two channels, perhaps because they were able to bind to two different PDZ domains in PDZK1. Thus while small portions of the populations of ClC-3B and CFTR may associate and co-localize, the bulk of the two populations reside in different organelles of cells where they are expressed heterologously or endogenously, and therefore their cellular functions are likely to be distinct and not primarily related.  相似文献   
72.
Horton AC  Ehlers MD 《Neuron》2003,40(2):277-295
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.  相似文献   
73.
Clues to Alzheimer disease (AD) pathogenesis come from a variety of different sources including studies of clinical and neuropathological features, biomarkers, genomics and animal and cellular models. An important role for amyloid precursor protein (APP) and its processing has emerged and considerable interest has been directed at the hypothesis that Aβ peptides induce changes central to pathogenesis. Accordingly, molecules that reduce the levels of Aβ peptides have been discovered such as γ-secretase inhibitors (GSIs) and modulators (GSMs). GSIs and GSMs reduce Aβ levels through very different mechanisms. However, GSIs, but not GSMs, markedly increase the levels of APP CTFs that are increasingly viewed as disrupting neuronal function. Here, we evaluated the effects of GSIs and GSMs on a number of neuronal phenotypes possibly relevant to their use in treatment of AD. We report that GSI disrupted retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF), suppressed BDNF-induced downstream signaling pathways and induced changes in the distribution within neuronal processes of mitochondria and synaptic vesicles. In contrast, treatment with a novel class of GSMs had no significant effect on these measures. Since knockdown of APP by specific siRNA prevented GSI-induced changes in BDNF axonal trafficking and signaling, we concluded that GSI effects on APP processing were responsible, at least in part, for BDNF trafficking and signaling deficits. Our findings argue that with respect to anti-amyloid treatments, even an APP-specific GSI may have deleterious effects and GSMs may serve as a better alternative.  相似文献   
74.
Insulin stimulates the mobilization of glucose transporter 4 (GLUT4) storage vesicles to the plasma membrane, resulting in an influx of glucose into target tissues such as muscle and fat. We present evidence that CLIP-associating protein 2 (CLASP2), a protein previously unassociated with insulin action, is responsive to insulin stimulation. Using mass spectrometry-based protein identification combined with phosphoantibody immunoprecipitation in L6 myotubes, we detected a 4.8-fold increase of CLASP2 in the anti-phosphoserine immunoprecipitates upon insulin stimulation. Western blotting of CLASP2 immunoprecipitates with the phosphoantibody confirmed the finding that CLASP2 undergoes insulin-stimulated phosphorylation, and a number of novel phosphorylation sites were identified. Confocal imaging of L6 myotubes revealed that CLASP2 colocalizes with GLUT4 at the plasma membrane within areas of insulin-mediated cortical actin remodeling. CLASP2 is responsible for directing the distal end of microtubules to the cell cortex, and it has been shown that GLUT4 travels along microtubule tracks. In support of the concept that CLASP2 plays a role in the trafficking of GLUT4 at the cell periphery, CLASP2 knockdown by siRNA in L6 myotubes interfered with insulin-stimulated GLUT4 localization to the plasma membrane. Furthermore, siRNA mediated knockdown of CLASP2 in 3T3-L1 adipocytes inhibited insulin-stimulated glucose transport. We therefore propose a new model for CLASP2 in insulin action, where CLASP2 directs the delivery of GLUT4 to cell cortex landing zones important for insulin action.  相似文献   
75.
Clostridium difficile binary toxin (CDT) is an ADP-ribosyltransferase which is linked to enhanced pathogenesis of C. difficile strains. CDT has dual function: domain a (CDTa) catalyses the ADP-ribosylation of actin (enzymatic component), whereas domain b (CDTb) transports CDTa into the cytosol (transport component). Understanding the molecular mechanism of CDT is necessary to assess its role in C. difficile infection. Identifying amino acids that are essential to CDTa function may aid drug inhibitor design to control the severity of C. difficile infections. Here we report mutations of key catalytic residues within CDTa and their effect on CDT cytotoxicity. Rather than an all-or-nothing response, activity of CDTa mutants vary with the type of amino acid substitution; S345A retains cytotoxicity whereas S345Y was sufficient to render CDT non-cytotoxic. Thus CDTa cytotoxicity levels are directly linked to ADP-ribosyltransferase activity.  相似文献   
76.
Microparticles (MPs) are released constitutively and from activated cells. MPs play significant roles in vascular homeostasis, injury, and as biomarkers. The unique glycocalyx on the membrane of cells has frequently been exploited to identify specific cell types, however the glycocalyx of the MPs has yet to be defined. Thus, we sought to determine whether MPs, released both constitutively and during injury, from vascular cells have a glycocalyx matching those of the parental cell type to provide information on MP origin. For these studies we used rat pulmonary microvascular and artery endothelium, pulmonary smooth muscle, and aortic endothelial cells. MPs were collected from healthy or cigarette smoke injured cells and analyzed with a panel of lectins for specific glycocalyx linkages. Intriguingly, we determined that the MPs released either constitutively or stimulated by CSE injury did not express the same glycocalyx of the parent cells. Further, the glycocalyx was not unique to any of the specific cell types studied. These data suggest that MPs from both normal and healthy vascular cells do not share the parental cell glycocalyx makeup.  相似文献   
77.
A novel screening procedure was developed for isolating Chinese hamster ovary cell mutants altered in the early steps of the biosynthesis of asparagine-linked glycoproteins. This procedure identifies cells with low intracellular levels of two lysosomal hydrolases, beta-glucuronidase and alpha-iduronidase. One mutant cell line isolated in this way, CHB 11-1-3, has low intracellular levels of seven lysosomal enzymes as compared to wild-type cells. Although CHB 11-1-3 synthesizes mannosylphosphoryldolichol and [Man]5[NAcG1cNH2]2-P-P-lipid, it fails to utilize these lipid intermediates to make normal amounts of [Glc]3[Man]9[NAcG1cNH2]2P-P-lipid. As a consequence of this glycosylation defect, this mutant transfers oligosaccharides of a different structure than wild type to the lysosomal enzyme beta-hexosaminidase. In addition, it underglycosylates its proteins.  相似文献   
78.
We examined genotype (G) by environment (E) interactions for fitness in mesic and xeric ecotypes of the self-fertilizing annual grass, Avena barbata and their recombinant inbred hybrid progeny. Fitness was assayed (1) in experimental water and nutrient treatments in the greenhouse and (2) in common gardens in each ecotype's native habitat. G x E interactions were significant in the greenhouse. Nevertheless, the same recombinant genotypes tended to have high fitness across all water and nutrient treatments. G x E interactions were less pronounced in the field, and were driven by the contrast between the uniformly low survivorship at the mesic site in 2004 and genetic variation in fitness at the other years/site combinations. Moreover, the mesic ecotype consistently outperformed the xeric in both field and greenhouse. Several of the recombinant genotypes outperformed the parents in the novel greenhouse treatments, but these genotypes did not outperform the mesic parent in field trials. Indeed, it is only in the comparison between field and greenhouse environments that there was a noticeable change in the identity of the most-fit genotype. The results provide evidence that hybridization can create genotypes that are better adapted to newer environments such as those imposed in our greenhouse experiments.  相似文献   
79.
Bariatric surgeries, such as gastric bypass, result in dramatic and sustained weight loss that is usually attributed to a combination of gastric volume restriction and intestinal malabsorption. However, studies parceling out the contribution of enhanced intestinal stimulation in the absence of these two mechanisms have received little attention. Previous studies have demonstrated that patients who received intestinal bypass or Roux-en-Y surgery have increased release of gastrointestinal hormones. One possible mechanism for this increase is the rapid transit of nutrients into the intestine after eating. To determine whether there is increased secretion of anorectic peptides produced in the distal small intestine when this portion of the gut is given greater exposure to nutrients, we preformed ileal transpositions (IT) in rats. In this procedure, an isolated segment of ileum is transposed to the jejunum, resulting in an intestinal tract of normal length but an alteration in the normal distribution of endocrine cells along the gut. Rats with IT lost more weight (P < 0.05) and consumed less food (P < 0.05) than control rats with intestinal transections and reanastomosis without transposition. Weight loss in the IT rats was not due to malabsorption of nutrients. However, transposition of distal gut to a proximal location caused increased synthesis and release of the anorectic ileal hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY; P < 0.01). The association of weight loss with increased release of GLP-1 and PYY suggests that procedures that promote gastrointestinal endocrine function can reduce energy intake. These findings support the importance of evaluating the contribution of gastrointestinal hormones to the weight loss seen with bariatric surgery.  相似文献   
80.
l-Rhamnose is a component of plant cell wall pectic polysaccharides, diverse secondary metabolites, and some glycoproteins. The biosynthesis of the activated nucleotide-sugar form(s) of rhamnose utilized by the various rhamnosyltransferases is still elusive, and no plant enzymes involved in their synthesis have been purified. In contrast, two genes (rmlC and rmlD) have been identified in bacteria and shown to encode a 3,5-epimerase and a 4-keto reductase that together convert dTDP-4-keto-6-deoxy-Glc to dTDP-beta-l-rhamnose. We have identified an Arabidopsis cDNA that contains domains that share similarity to both reductase and epimerase. The Arabidopsis gene encodes a protein with a predicated molecular mass of approximately 33.5 kD that is transcribed in all tissue examined. The Arabidopsis protein expressed in, and purified from, Escherichia coli converts dTDP-4-keto-6-deoxy-Glc to dTDP-beta-l-rhamnose in the presence of NADPH. These results suggest that a single plant enzyme has both the 3,5-epimerase and 4-keto reductase activities. The enzyme has maximum activity between pH 5.5 and 7.5 at 30 degrees C. The apparent K(m) for NADPH is 90 microm and 16.9 microm for dTDP-4-keto-6-deoxy-Glc. The Arabidopsis enzyme can also form UDP-beta-l-rhamnose. To our knowledge, this is the first example of a bifunctional plant enzyme involved in sugar nucleotide synthesis where a single polypeptide exhibits the same activities as two separate prokaryotic enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号