首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   71篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   16篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2017年   17篇
  2016年   33篇
  2015年   32篇
  2014年   48篇
  2013年   42篇
  2012年   67篇
  2011年   58篇
  2010年   51篇
  2009年   34篇
  2008年   61篇
  2007年   47篇
  2006年   36篇
  2005年   41篇
  2004年   32篇
  2003年   37篇
  2002年   18篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   2篇
排序方式: 共有769条查询结果,搜索用时 46 毫秒
171.
Despite an exponential rise in anthropogenically-mediated transfers of non-indigenous species during the last 150 years, several coastal anthropogenic activities remain unregulated under current legislation frameworks. This study investigates the potential role of commercial periwinkle (Littorina littorea) harvesting as an unregulated facilitator of both small- and large-scale geographic range expansion of an invasive oyster epibiont (Ostrea chilensis) within the Menai Strait (North Wales, UK) and beyond. The frequency of oyster-fouled periwinkles was greatest in areas of high adult oyster abundance and restricted to large, market-sized periwinkles (>20 mm) inhabiting the low shore. Active efforts by commercial collectors to reject oyster-fouled periwinkles were found to be inadequate, with oysters of all sizes observed within collected hauls. Whilst the survival of fouled and unfouled periwinkles was comparable under post-collection refrigerated conditions, a significant decrease in both mobility and flesh content was associated with the presence of oyster epibionts. Survival of all but the smallest oyster epibionts under post-collection refrigerated conditions enhances the possibility of accidental non-indigenous oyster transfers. Better interventions during both initial visual inspection and post-griddling stages are recommended, as well as the development of techniques that kill off all non-indigenous epibionts, whilst leaving the freshness and marketability of the periwinkles uncompromised.  相似文献   
172.
Memory enables flexible use of past experience to inform new behaviors. Although leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants' ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats.  相似文献   
173.
Resensitization of G protein-coupled receptors (GPCR) following prolonged agonist exposure is critical for restoring the responsiveness of the receptor to subsequent challenges by agonist. The 3'-5' cyclic AMP-dependent protein kinase (PKA) and serine 312 in the third intracellular loop of the human beta(1)-adrenergic receptor (beta(1)-AR) were both necessary for efficient recycling and resensitization of the agonist-internalized beta(1)-AR (Gardner, L. A., Delos Santos, N. M., Matta, S. G., Whitt, M. A., and Bahouth, S. W. (2004) J. Biol. Chem. 279, 21135-21143). Because PKA is compartmentalized near target substrates by interacting with protein kinase A anchoring proteins (AKAPs), the present study was undertaken to identify the AKAP involved in PKA-mediated phosphorylation of the beta(1)-AR and in its recycling and resensitization. Here, we report that Ht-31 peptide-mediated disruption of PKA/AKAP interactions prevented the recycling and functional resensitization of heterologously expressed beta(1)-AR in HEK-293 cells and endogenously expressed beta(1)-AR in SK-N-MC cells and neonatal rat cortical neurons. Whereas several endogenous AKAPs were identified in HEK-293 cells, small interfering RNA-mediated down-regulation of AKAP79 prevented the recycling of the beta(1)-AR in this cell line. Co-immunoprecipitations and fluorescence resonance energy transfer (FRET) microscopy experiments in HEK-293 cells revealed that the beta(1)-AR, AKAP79, and PKA form a ternary complex at the carboxyl terminus of the beta(1)-AR. This complex was involved in PKA-mediated phosphorylation of the third intracellular loop of the beta(1)-AR because disruption of PKA/AKAP interactions or small interfering RNA-mediated down-regulation of AKAP79 both inhibited this response. Thus, AKAP79 provides PKA to phosphorylate the beta(1)-AR and thereby dictate the recycling and resensitization itineraries of the beta(1)-AR.  相似文献   
174.
175.
This paper presents a novel system to compute the automated classification of wireless capsule endoscope images. Classification is achieved by a classical statistical approach, but novel features are extracted from the wavelet domain and they contain both color and texture information. First, a shift-invariant discrete wavelet transform (SIDWT) is computed to ensure that the multiresolution feature extraction scheme is robust to shifts. The SIDWT expands the signal (in a shift-invariant way) over the basis functions which maximize information. Then cross-co-occurrence matrices of wavelet subbands are calculated and used to extract both texture and color information. Canonical discriminant analysis is utilized to reduce the feature space and then a simple 1D classifier with the leave one out method is used to automatically classify normal and abnormal small bowel images. A classification rate of 94.7% is achieved with a database of 75 images (41 normal and 34 abnormal cases). The high success rate could be attributed to the robust feature set which combines multiresolutional color and texture features, with shift, scale and semi-rotational invariance. This result is very promising and the method could be used in a computer-aided diagnosis system or a content-based image retrieval scheme.  相似文献   
176.
Diffuse large B-cell lymphoma (DLBCL) with a germinal center B-cell (GCB) phenotype is believed to confer a better prognosis than DLBCL with an activated B-cell (ABC) phenotype. Previous studies have suggested that nuclear factor-κB (NF-κB) activation plays an important role in the ABC subtype of DLBCL, whereas c-REL amplification is associated with the GCB subtype. Using immunohistochemical techniques, we examined 68 newly diagnosed de novo DLBCL cases (median follow-up 44 months, range 1 to 142 months) for the expression of c-REL, BCL-6, CD10, and MUM1/IRF4. Forty-four (65%) cases demonstrated positive c-REL nuclear expression. In this cohort of patients, the GCB phenotype was associated with a better overall survival (OS) than the non-GCB phenotype (Kaplan–Meier survival (KMS) analysis, p = 0.016, Breslow–Gehan–Wilcoxon test). In general, c-REL nuclear expression did not correlate with GCB vs. non-GCB phenotype, International Prognostic Index score, or OS. However, cases with a GCB phenotype and negative nuclear c-REL demonstrated better OS than cases with a GCB phenotype and positive nuclear c-REL (KMS analysis, p = 0.045, Breslow–Gehan–Wilcoxon test), whereas in cases with non-GCB phenotype, the expression of c-REL did not significantly impact the prognosis. These results suggest that c-REL nuclear expression may be a prognostic factor in DLBCL and it may improve patient risk stratification in combination with GCB/non-GCB phenotyping.  相似文献   
177.
Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.  相似文献   
178.
Telomeres are composed of specialized chromatin that includes DNA repair/recombination proteins, telomere DNA‐binding proteins and a number of three dimensional nucleic acid structures including G‐quartets and D‐loops. A number of studies suggest that the BLM and WRN recQ‐like helicases play important roles in recombination‐mediated mechanisms of telomere elongation or A lternative L engthening of T elomeres (ALT), processes that maintain/elongate telomeres in the absence of telomerase. BLM and WRN localize within ALT‐associated nuclear bodies in telomerase‐negative immortalized cell lines and interact with the telomere‐specific proteins POT1, TRF1 and TRF2. Helicase activity is modulated by these interactions. BLM functions in DNA double‐strand break repair processes such as non‐homologous end joining, homologous recombination‐mediated repair, resolution of stalled replication forks and synthesis‐dependent strand annealing, although its precise functions at the telomeres are speculative. WRN also functions in DNA replication, recombination and repair, and in addition to its helicase domain, includes an exonuclease domain not found in other recQ‐like helicases. The biochemical properties of BLM and WRN are, therefore, important in biological processes other than DNA replication, recombination and repair. In this review, we discuss some previous and recent findings of human rec‐Q‐like helicases and their role in telomere elongation during ALT processes. J. Cell. Biochem. 109: 7–15, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
179.
The cellular molecular motor kinesin-1 mediates the microtubule-dependent transport of a range of cargo. We have previously identified an interaction between the cargo-binding domain of kinesin-1 heavy chain KIF5B and the membrane-associated SNARE proteins SNAP-25 and SNAP-23. In this study we further defined the minimal SNAP-25 binding domain in KIF5B to residues 874-894. Overexpression of a fragment of KIF5B (residues 594-910) resulted in significant colocalization with SNAP-25 with resulting blockage of the trafficking of SNAP-25 to the periphery of cells. This indicates that kinesin-1 facilitates the transport of SNAP-25 containing vesicles as a prerequisite to SNAP-25 driven membrane fusion events.  相似文献   
180.
Mutations in the unc-82 locus of Caenorhabditis elegans were previously identified by screening for disrupted muscle cytoskeleton in otherwise apparently normal mutagenized animals. Here we demonstrate that the locus encodes a serine/threonine kinase orthologous to human ARK5/SNARK (NUAK1/NUAK2) and related to the PAR-1 and SNF1/AMP-Activated kinase (AMPK) families. The predicted 1600-amino-acid polypeptide contains an N-terminal catalytic domain and noncomplex repetitive sequence in the remainder of the molecule. Phenotypic analyses indicate that unc-82 is required for maintaining the organization of myosin filaments and internal components of the M-line during cell-shape changes. Mutants exhibit normal patterning of cytoskeletal elements during early embryogenesis. Defects in localization of thick filament and M-line components arise during embryonic elongation and become progressively more severe as development proceeds. The phenotype is independent of contractile activity, consistent with unc-82 mutations preventing proper cytoskeletal reorganization during growth, rather than undermining structural integrity of the M-line. This is the first report establishing a role for the UNC-82/ARK5/SNARK kinases in normal development. We propose that activation of UNC-82 kinase during cell elongation regulates thick filament attachment or growth, perhaps through phosphorylation of myosin and paramyosin. We speculate that regulation of myosin is an ancestral characteristic of kinases in this region of the kinome.THE contractile apparatus of striated muscle is a highly ordered cytoskeletal structure (Figure 1) composed of actin and myosin filaments, the filament anchoring structures, and a host of regulatory proteins. During Caenorhabditis elegans embryogenesis, the body-wall muscle cells polarize and assemble their cytoskeletons in response to contact with the epidermal cells, to which they attach through focal-adhesion-like structures. The epidermal cells respond in a similar fashion and assemble attachment structures and fibrous organelles at the sites of muscle-cell contact (reviewed in Moerman and Williams 2006). The coordination of the cytoskeletons of the two tissue types provides the physical attachment that transmits the force of muscle-cell contraction to the epidermis and its secreted cuticle and allows the worm to locomote through its environment. The patterning of the contractile apparatus occurs through integrin-mediated signaling at the plasma membrane where muscle cells contact the epidermis. The assembly of more interior (membrane-distal) components of the contractile apparatus follows and requires the membrane-proximal events (Hresko et al. 1994). Failure to assemble functional epidermal–muscle-cell contacts or failure to make contractile muscle cells prevents elongation of the embryo from an egg shape into a long tube. Many genes required for these early patterning events, as well as those essential for muscle contraction, have been identified by screening for embryonic lethal mutations that produce the Pat phenotype (paralyzed, arrested elongation at two-fold) (Williams and Waterston 1994).Open in a separate windowFigure 1.—unc-82 mutants show dramatic defects in localization of thick-filament and M-line components, but normal patterning of membrane and dense-body proteins. A diagram of the sarcomere (top) is highlighted to indicate those components affected in unc-82 mutants. Structures represented include the actin filaments anchored to the dense body (the Z-line analog) and myosin-containing thick filaments associated with the M-line. The components represented in white exhibit abnormal staining patterns in unc-82 mutants; those represented in gray are relatively unaffected. (A–N) Adult fragments from wild-type (left column) and unc-82 mutant worms (right column) were stained with antibodies specific for components of the contractile apparatus. Thick-filament proteins myosin A (A and B) and paramyosin (C and D) are grossly mislocalized in unc-82 mutants, as is the M-line component UNC-89/obscurin (E and F). White arrows (B, D, F, and H) indicate abnormal accumulations of thick-filament and M-line proteins, and asterisks (A and K) mark a cell border. Actin staining (G and H) is mildly disrupted, but does not appear in large clumps. The distribution of α-actinin, vinculin, and integrin (I–N) (organized lines of puncta, solid arrows) is similar in mutant and wild type. Antibodies: myosin A, 5.6; paramyosin, 5.23; UNC-89, EU30; actin, C4; α-actinin, MH35; vinculin, MH24; integrin MH25. Bar, 10 μm.However, proteins that act subsequent to the early patterning events or are not essential for contraction would not have been identified in the Pat screens. Mutations in the unc-82 gene were isolated by screening apparently normal animals for muscle-cell disorganization using polarized light microscopy (Waterston et al. 1980). Animals homozygous for unc-82 mutations exhibit patchy, bright birefringence rather than the uniform bright bands of signal that mark the areas of organized myosin-containing thick filaments in wild-type worms. To define the mechanisms underlying filament organization within the contractile apparatus, we undertook molecular and phenotypic analyses of unc-82 mutants. Our data suggest that UNC-82 is a kinase, orthologous to human ARK5 and SNARK, that is required specifically for myosin filament reorganization during cellular elongation in normal development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号