首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   208篇
  国内免费   1篇
  2016年   13篇
  2015年   19篇
  2014年   29篇
  2013年   28篇
  2012年   32篇
  2011年   43篇
  2010年   24篇
  2009年   21篇
  2008年   38篇
  2007年   31篇
  2006年   39篇
  2005年   31篇
  2004年   39篇
  2003年   36篇
  2002年   28篇
  2001年   33篇
  2000年   27篇
  1999年   27篇
  1998年   15篇
  1997年   15篇
  1996年   22篇
  1995年   18篇
  1994年   12篇
  1993年   14篇
  1992年   24篇
  1991年   23篇
  1990年   21篇
  1989年   24篇
  1988年   23篇
  1987年   18篇
  1986年   22篇
  1985年   20篇
  1984年   16篇
  1983年   14篇
  1982年   15篇
  1981年   22篇
  1980年   20篇
  1979年   18篇
  1978年   7篇
  1977年   19篇
  1976年   11篇
  1975年   19篇
  1974年   7篇
  1973年   22篇
  1972年   9篇
  1971年   22篇
  1970年   8篇
  1969年   7篇
  1968年   8篇
  1965年   12篇
排序方式: 共有1142条查询结果,搜索用时 171 毫秒
991.
992.
The gene encoding tyrosine aminotransferase (TAT, EC 2.6.1.5) from the parasitic protozoan Trypanosoma cruzi was amplified from genomic DNA, cloned into the pET24a expression vector and functionally expressed as a C-terminally His-tagged protein in Escherichia coli BL21(DE3)pLysS. Purified recombinant TAT exhibited identical electrophoretic and enzymatic properties as the authentic enzyme from T. cruzi. Both recombinant and authentic T. cruzi TATs were highly resistant to limited tryptic cleavage and contained no disulfide bonds. Comprehensive analysis of its substrate specificity demonstrated TAT to be a broad substrate aminotransferase, with leucine, methionine as well as tyrosine, phenylalanine, tryptophan and alanine being utilized efficiently as amino donors. Valine, isoleucine and dicarboxylic amino acids served as poor substrates while polar aliphatic amino acids could not be transaminated. TAT also accepted several 2-oxoacids, including 2-oxoisocaproate and 2-oxomethiobutyrate, in addition to pyruvate, oxaloacetate and 2-oxoglutarate. The functionality of the expression system was confirmed by constructing two variants; one (Arg389) being a completely inactive enzyme; the other (Arg283) retaining its full activity, as predicted from the recently solved three-dimensional structure of T. cruzi TAT. Thus, only one of the two strictly conserved arginines which are essential for the enzymatic activity of subfamily Ialpha aspartate and aromatic aminotransferases is critical for T. cruzi's TAT activity.  相似文献   
993.
Raman optical activity (ROA) spectra have been measured for the proteins hen phosvitin, yeast invertase, bovine alpha-casein, soybean Bowman-Birk protease inhibitor, and rabbit Cd(7)-metallothionein, all of which have irregular folds in the native state. The results show that ROA is able to distinguish between two types of disorder. Specifically, invertase, alpha-casein, the Bowman-Birk inhibitor, and metallothionein appear to possess a "static" type of disorder similar to that in disordered states of poly(L-lysine) and poly(L-glutamic acid); whereas phosvitin appears to possess a more "dynamic" type of disorder similar to that in reduced (unfolded) lysozyme and ribonuclease A and also in molten globule protein states. In the delimiting cases, static disorder corresponds to that found in loops and turns within native proteins with well-defined tertiary folds that contain sequences of residues with fixed but nonrepetitive phi,psi angles; and dynamic disorder corresponds to that envisaged for the model random coil in which there is a distribution of Ramachandran phi,psi angles for each amino acid residue, giving rise to an ensemble of interconverting conformers. In both cases there is a propensity for the phi,psi angles to correspond to the alpha, beta and poly(L-proline) II (PPII) regions of the Ramachandran surface, as in native proteins with well-defined tertiary folds. Our results suggest that, with the exception of invertase and metallothionein, an important conformational element present in the polypeptide and protein states supporting the static type of disorder is that of the PPII helix. Long sequences of relatively unconstrained PPII helix, as in alpha-casein, may impart a plastic (rheomorphic) character to the structure.  相似文献   
994.
Tryparedoxins (TXN) are thioredoxin-related proteins which, as trypanothione:peroxiredoxin oxidoreductases, constitute the trypanothione-dependent antioxidant defense and may also serve as substrates for ribonucleotide reductase in trypanosomatids. The active site motif of TXN2, 40WCPPCR45, of Crithidia fasciculata was mutated by site-directed mutagenesis and eight corresponding muteins were expressed in E. coli as terminally His-tagged proteins, purified to homogeneity by nickel chelate chromatography, and characterized in terms of specific activity, specificity and, if possible, kinetics. Exchange of Cys41 and Cys44 by serine yielded inactive products confirming their presumed involvement in catalysis. Exchange of Arg45 by aspartate resulted in loss of activity, suggesting an activation of active site cysteines by the positive charge of Arg45. Substitution of Trp40 by phenylalanine or tyrosine resulted in moderate decrease of specific activity, as did exchange of Pro42 by glycine. Kinetic analysis of these three muteins revealed that primarilythe reaction with trypanothione is affected by the mutations. Simulation of thioredoxin or glutaredoxin-like active sites in TXN2 (P42G and W40T/P43Y, respectively) did not result in thioredoxin or glutaredoxin-like activities. These data underscore that TXNs, although belonging to the thioredoxin superfamily, represent a group of enzymes distinct from thioredoxins and glutaredoxins in terms of specificity, and appear attractive as molecular targets for the design of trypanocidal compounds.  相似文献   
995.
Galanin is widely distributed in enteric nerve terminals lining the gastrointestinal tract. We previously showed that pathogenic Escherichia coli, but not normal commensal organisms, increase galanin-1 receptor expression by epithelial cells lining the colon (i.e., colonocytes). When present, galanin-1 receptor activation by ligand causes colonocyte Cl- secretion. We herein demonstrate that disparate pathogens including Salmonella typhimurium and Shigella flexerii also increase colonocyte galanin-1 receptor expression, whose activation is responsible for a principal component of the increased colonic fluid secretion observed. Although eliminating the GAL1R gene by homologous recombination does not alter basal colonic fluid secretion, removal of one or both alleles completely attenuates the increase in fluid secretion due to infection with enteric pathogens. Galanin-1 receptor up-regulation therefore represents a novel mechanism accounting for the increased colonic fluid secretion observed in infectious diarrhea due to several different pathogens.  相似文献   
996.
Ribosomally mediated protein biosynthesis is limited to α-L-amino acids. A strong bias against β-L-amino acids precludes their incorporation into proteins in vivo and also in vitro in the presence of misacylated β-aminoacyl-tRNAs. Nonetheless, earlier studies provide some evidence that analogues of aminoacyl-tRNAs bearing β-amino acids can be accommodated in the ribosomal A-site. Both functional and X-ray crystallographic data make it clear that the exclusion of β-L-amino acids as participants in protein synthesis is a consequence of the architecture of the ribosomal peptidyltransferase center (PTC). To enable the reorganization of ribosomal PTC architecture through mutagenesis of 23S rRNA, a library of modified ribosomes having modifications in two regions of the 23S rRNA (2057-2063 and 2496-2507 or 2582-2588) was prepared. A dual selection procedure was used to obtain a set of modified ribosomes able to carry out protein synthesis in the presence β-L-amino acids and to provide evidence for the utilization of such amino acids, in addition to α-L-amino acids. β-Puromycin, a putative mimetic for β-aminoacyl-tRNAs, was used to select modified ribosome variants having altered PTC architectures, thus potentially enabling incorporation of β-L-amino acids. Eight types of modified ribosomes altered within the PTC have been selected by monitoring improved sensitivity to β-puromycin in vivo. Two of the modified ribosomes, having 2057AGCGUGA2063 and 2502UGGCAG2507 or 2502AGCCAG2507, were able to suppress UAG codons in E. coli dihydrofolate reductase (DHFR) and scorpion Opisthorcanthus madagascariensis peptide IsCT mRNAs in the presence of β-alanyl-tRNA(CUA).  相似文献   
997.
CopA, a P-type ATPase transporter involved in copper detoxification in Bacillus subtilis, contains two soluble Atx1-like domains separated by a short linker at its N-terminus, an arrangement that occurs widely in copper transporters from both prokaryotes and eukaryotes. Both domains were previously found to bind Cu(I) with very high affinity. Above a level of 1 Cu(I) per CopAab, dimerization occurred, leading to a highly luminescent multinuclear Cu(I) species [Singleton C & Le Brun NE (2009) Dalton Trans, 688-696]. To try to understand the contributions of each domain to the complex Cu(I)-binding behaviour of this and related proteins, we purified a wild-type form of the first domain (CopAa). In isolation, the domain bound Cu(I) with very high affinity (K = ~ 1 × 10(18) m(-1) ) and underwent Cu(I)-mediated protein association, resulting in a mixture of dimer and tetramer species. Addition of further Cu(I) up to 1 Cu(I) per CopAa monomer led to a weakly luminescent species, whereas further additions [2 Cu(I) per CopAa monomer] resulted in protein unfolding. Analysis of the MTCAAC binding motif Cys residue acid-base properties revealed pK(a) values of 5.7 and 7.3, consistent with the pH dependence of Cu(I) binding, and with the proposal that low proton affinity is associated with high Cu(I) affinity. Finally, Cu(I) exchange between CopAa and the chelator bathocuproine sulfonate revealed rapid exchange in both directions, demonstrating an interaction between the protein and the chelator that catalyses metal ion transfer. Overall, CopAa exhibits similarities to CopAab in terms of affinity and complexity of Cu(I) binding, but the details of Cu(I) binding are distinct.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号