首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   70篇
  2021年   4篇
  2020年   9篇
  2019年   9篇
  2018年   5篇
  2017年   6篇
  2016年   14篇
  2015年   20篇
  2014年   29篇
  2013年   29篇
  2012年   22篇
  2011年   33篇
  2010年   23篇
  2009年   21篇
  2008年   23篇
  2007年   24篇
  2006年   20篇
  2005年   19篇
  2004年   12篇
  2003年   22篇
  2002年   22篇
  2001年   14篇
  2000年   18篇
  1999年   17篇
  1998年   8篇
  1997年   14篇
  1996年   8篇
  1995年   3篇
  1994年   8篇
  1992年   15篇
  1991年   15篇
  1990年   6篇
  1989年   12篇
  1988年   6篇
  1987年   11篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1982年   7篇
  1981年   7篇
  1979年   5篇
  1975年   3篇
  1974年   7篇
  1973年   3篇
  1972年   2篇
  1971年   6篇
  1969年   3篇
  1968年   2篇
  1966年   3篇
  1964年   2篇
  1959年   2篇
排序方式: 共有600条查询结果,搜索用时 15 毫秒
511.
In tyrosinase-positive amelanotic melanoma cells, inactive tyrosinase accumulates in the endoplasmic reticulum. Based on studies described here, we propose that aberrant vacuolar proton ATPase (V-ATPase)-mediated proton transport in melanoma cells disrupts tyrosinase trafficking through the secretory pathway. Amelanotic but not melanotic melanoma cells or normal melanocytes display elevated proton export as observed by the acidification of the extracellular medium and their ability to maintain neutral intracellular pH. Tyrosinase activity and transit through the Golgi were restored by either maintaining the melanoma cells in alkaline medium (pH 7.4-7.7) or by restricting glucose uptake. The translocation of tyrosinase out of the endoplasmic reticulum and the induction of cell pigmentation in the presence of the ionophore monensin or the specific V-ATPase inhibitors concanamycin A and bafilomycin A1 supported a role for V-ATPases in this process. Because it was previously shown that V-ATPase activity is increased in solid tumors in response to an acidified environment, the appearance of hypopigmented cells in tyrosinase-positive melanoma tumors may indicate the onset of enhanced glycolysis and extracellular acidification, conditions known to favor metastatic spread and resistance to weak base chemotherapeutic drugs.  相似文献   
512.
The bumetanide-sensitive Na(+):K(+):2Cl(-) cotransporter (BSC1) is the major pathway for salt reabsorption in the apical membrane of the mammalian thick ascending limb of Henle. Three isoforms of the cotransporter, known as A, B, and F, exhibit axial expression along the thick ascending limb. We report here a functional comparison of the three isoforms from mouse kidney. When expressed in Xenopus oocytes the mBSC1-A isoform showed higher capacity of transport, with no difference in the amount of surface expression. Kinetic characterization revealed divergent affinities for the three cotransported ions. The observed EC(50) values for Na(+), K(+), and Cl(-) were 5.0 +/- 3.9, 0.96 +/- 0.16, and 22.2 +/- 4.8 mm for mBSC1-A; 3.0 +/- 0.6, 0.76 +/- 0.07, and 11.6 +/- 0.7 mm for mBSC1-B; and 20.6 +/- 7.2, 1.54 +/- 0.16, and 29.2 +/- 2.1 mm for mBSC1-F, respectively. Bumetanide sensitivity was higher in mBSC1-B compared with the mBSC1-A and mBSC1-F isoforms. All three transporters were partially inhibited by hypotonicity but to different extents. The cell swelling-induced inhibition profile was mBSC1-F > mBSC1-B > mBSC1-A. The function of the Na(+):K(+):2Cl(-) cotransporter was not affected by extracellular pH or by the addition of metolazone, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), or R(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1-H-indenyl-5-yl)-oxy]acetic acid (DIOA) to the extracellular medium. In contrast, exposure of oocytes to HgCl(2) before the uptake period reduced the activity of the cotransporter. The effect of HgCl(2) was dose-dependent, and mBSC1-A and mBSC1-B exhibited higher affinity than mBSC1-F. Overall, the functional comparison of the murine apical renal-specific Na(+):K(+):2Cl(-) cotransporter isoforms A, B, and F reveals important functional, pharmacological, and kinetic differences, with both physiological and structural implications.  相似文献   
513.
The aims of this study were to 1) compare the inflammatory potential of night- and day-shift nurses’ diets with regard to time of day and work status and 2) explore how the timing of food intake during work and off-work is associated with cardiometabolic syndrome (CMS) risk factors between these two groups. Female nurses (N = 17; 8 day-shift and 9 night-shift) reported food intake over 9 days. On a middle day off of work, metabolic parameters were measured after an overnight fast. Energy/macronutrient intake and inflammatory potential of dietary intake (as assessed via the Dietary Inflammatory IndexTM) were calculated for nurses’ workdays, work nights, off-work days, and off-work nights. Work-night total food intake (grams) accounted for a significant amount of variance in CMS risk factors for night-shift nurses only. Increased total gram consumption during night-shift nurses’ work nights was associated with increased lipid levels – independent of the macronutrient composition of the food consumed. Alternatively, for night-shift nurses, work-day intake of several food parameters accounted for a significant proportion of variance in HDL cholesterol levels, with higher intake associated with higher HDL levels. For both day- and night-shift nurses, food intake during the day was more pro-inflammatory regardless of shift type or work status. Our novel approach of combining time-of-day-specific and work-day-specific analyses of dietary inflammatory factors and macronutrient composition with measurement of CMS risk factors suggests a link between meal timing and cardiometabolic health for shift-working nurses.  相似文献   
514.
515.
By facilitating bioliteracy, DNA barcoding has the potential to improve the way the world relates to wild biodiversity. Here we describe the early stages of the use of cox1 barcoding to supplement and strengthen the taxonomic platform underpinning the inventory of thousands of sympatric species of caterpillars in tropical dry forest, cloud forest and rain forest in northwestern Costa Rica. The results show that barcoding a biologically complex biota unambiguously distinguishes among 97% of more than 1000 species of reared Lepidoptera. Those few species whose barcodes overlap are closely related and not confused with other species. Barcoding also has revealed a substantial number of cryptic species among morphologically defined species, associated sexes, and reinforced identification of species that are difficult to distinguish morphologically. For barcoding to achieve its full potential, (i) ability to rapidly and cheaply barcode older museum specimens is urgent, (ii) museums need to address the opportunity and responsibility for housing large numbers of barcode voucher specimens, (iii) substantial resources need be mustered to support the taxonomic side of the partnership with barcoding, and (iv) hand-held field-friendly barcorder must emerge as a mutualism with the taxasphere and the barcoding initiative, in a manner such that its use generates a resource base for the taxonomic process as well as a tool for the user.  相似文献   
516.
The majority of proteins that traverse the secretory pathway receive asparagine (Asn)-linked glycosylations. Glycans are bulky hydrophilic modifications that serve a variety of structural and functional roles within the cell. Here, we review the recent growing knowledge on the role of Asn-linked glycans as maturation and quality-control protein tags in the early secretory pathway. The carbohydrate composition encodes crucial information about the structure, localization and age of glycoproteins. The "glycan code" is encoded by a series of glycosidases and carbohydrate transferases that line the secretory pathway. This code is deciphered by carbohydrate-binding proteins that possess distinct carbohydrate binding properties and act as molecular chaperones or sorting receptors. These glycosidases and transferases work in concert with resident secretory pathway carbohydrate-binding proteins to form a network that assists in the maturation and trafficking of both native and aberrant glycoproteins within the cell.  相似文献   
517.
A series of plasmids harboring CTG.CAG repeats with double-strand breaks (DSB), single-strand nicks, or single-strand gaps (15 or 30 nucleotides) within the repeat regions were used to determine their capacity to induce genetic instabilities. These plasmids were introduced into Escherichia coli in the presence of a second plasmid containing a sequence that could support homologous recombination repair between the two plasmids. The transfer of a point mutation from the second to the first plasmid was used to monitor homologous recombination (gene conversion). Only DSBs increased the overall genetic instability. This instability took place by intramolecular repair, which was not dependent on RuvA. Double-strand break-induced instabilities were partially stabilized by a mutation in recF. Gaps of 30 nt formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nt did not induce expansions or deletions. Formation of this deletion product required the CTG.CAG repeats to be present in the single-stranded region and was stimulated by E.coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the intramolecular repair-induced instabilities and the formation of the 30 nt deletion product.  相似文献   
518.
The ROMK (Kir1.1; Kcnj1) gene is believed to encode the apical small conductance K(+) channels (SK) of the thick ascending limb (TAL) and cortical collecting duct (CCD). Loss-of-function mutations in the human ROMK gene cause Bartter's syndrome with renal Na(+) wasting, consistent with the role of this channel in apical K(+) recycling in the TAL that is crucial for NaCl reabsorption. However, the mechanism of renal K(+) wasting and hypokalemia that develop in individuals with ROMK Bartter's syndrome is not apparent given the proposed loss of the collecting duct SK channel. Thus, we generated a colony of ROMK null mice with approximately 25% survival to adulthood that provides a good model for ROMK Bartter's syndrome. The remaining 75% of null mice die in less than 14 days after birth. The surviving ROMK null mice have normal gross renal morphology with no evidence of significant hydronephrosis, whereas non-surviving null mice exhibit marked hydronephrosis. ROMK protein expression was absent in TAL and CCD from null mice but exhibited normal abundance and localization in wild-type littermates. ROMK null mice were polyuric and natriuretic with an elevated hematocrit consistent with mild extracellular volume depletion. SK channel activity in TAL and CCD was assessed by patch clamp analysis in ROMK wild-type ROMK(+/+), heterozygous ROMK(+/-), and null ROMK(-/-) mice. In 313 patches with successful seals from the three ROMK genotypes, SK channel activity in ROMK (+/+ and +/-) exhibited normal single channel kinetics. The expression frequencies are as follows: 67 (TAL) and 58% (CCD) in ROMK(+/+); about half that of the wild-type in ROMK(+/-), being 38 (TAL) and 25% (CCD); absent in both TAL or CCD in ROMK(-/-) between 2 and 5 weeks in 15 mice (61 and 66 patches, respectively). The absence of SK channel activity in ROMK null mice demonstrates that ROMK is essential for functional expression of SK channels in both TAL and CCD. Despite loss of ROMK expression, the normokalemic null mice exhibited significantly increased kaliuresis, indicating alternative mechanisms for K(+) absorption/secretion in the nephron.  相似文献   
519.
Ca2+-permeable AMPARs are inwardly rectifying due to block by intracellular polyamines. Neuronal activity regulates polyamine synthesis, yet whether this affects Ca2+-AMPAR-mediated synaptic transmission is unknown. We test whether 4 hr of increased visual stimulation regulates glutamatergic retino-tectal synapses in Xenopus tadpoles. Tectal neurons containing Ca2+-AMPARs form a gradient along the rostro-caudal developmental axis. These neurons had inwardly rectifying AMPAR-mediated EPSCs. Four hours of visual stimulation or addition of intracellular spermine increased rectification in immature neurons. Polyamine synthesis inhibitors blocked the effect of visual stimulation, suggesting that visual activity regulates AMPARs via the polyamine synthesis pathway. This modulation resulted in changes in the integrative properties of tectal neurons. Regulation of polyamine synthesis by physiological stimuli is a novel form of modulation of synaptic transmission important for understanding the short-term effects of enhanced sensory experience during development.  相似文献   
520.
BACKGROUND: Gynecological laparoscopic surgery procedures are often complicated by postoperative pain resulting in an unpleasant experience for the patient, delayed discharge, and increased cost. Glucocorticosteroids have been suggested to reduce the severity and incidence of postoperative pain. METHODS: This study examines the efficacy of a sustained release betamethasone preparation to reduce postoperative pain and the requirement for pain relief drugs after either diagnostic laparoscopy or tubal ligation. Patients were recruited, as presenting, after obtaining informed consent. Prior to surgery, patients were randomly selected by a computer generated table to receive either pharmacy-coded betamethasone (12 mg IM Celestone trade mark ) or an optically identical placebo injection of Intralipid trade mark and isotonic saline mixture. The effect of non-controlled prophylactic intraoperative treatment with either fentanyl or ketorolac per surgeon's orders was also noted in this study. Blood samples taken at recovery and at discharge times were extracted and analyzed for circulating betamethasone. Visual analog scale data on pain was gathered at six post-recovery time points in a triple blind fashion and statistically compared. The postoperative requirement for pain relief drugs was also examined. RESULTS: Although the injection achieved a sustained therapeutic concentration, no beneficial effect of IM betamethasone on postoperative pain or reduction in pain relief drugs was observed during the postoperative period. Indeed, the mean combined pain scores during the 2 hour postoperative period, adjusted for postoperative opioids as the major confounding factor, were higher approaching statistical significance (P = 0.056) in the treatment group. Higher pain scores were also observed for the tubal ligation patients relative to diagnostic laparoscopy. Intraoperative fentanyl treatment did not significantly lower the average pain score during the 2 hour postoperative period. Intraoperative ketorolac treatment significantly lowered (P = 0.027) pain scores and reduced the postoperative requirement for additional pain relief drugs. CONCLUSIONS: There was a lack of efficacy of preoperative sustained release betamethasone in reducing postoperative pain despite maintaining a therapeutic concentration during the postoperative period. Intraoperative Ketorolac did afford some short-term pain relief in the postoperative period and reduced the need for additional pain relief drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号