全文获取类型
收费全文 | 264篇 |
免费 | 14篇 |
专业分类
278篇 |
出版年
2024年 | 3篇 |
2023年 | 11篇 |
2022年 | 29篇 |
2021年 | 29篇 |
2020年 | 11篇 |
2019年 | 21篇 |
2018年 | 12篇 |
2017年 | 6篇 |
2016年 | 12篇 |
2015年 | 16篇 |
2014年 | 24篇 |
2013年 | 21篇 |
2012年 | 19篇 |
2011年 | 20篇 |
2010年 | 10篇 |
2009年 | 8篇 |
2008年 | 1篇 |
2007年 | 2篇 |
2006年 | 3篇 |
2005年 | 3篇 |
2004年 | 6篇 |
2003年 | 3篇 |
2002年 | 1篇 |
2001年 | 2篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有278条查询结果,搜索用时 15 毫秒
81.
Azza M. Abdel-Fattah Mamdouh S. El-Gamal Siham A. Ismail Mohamed A. Emran Amal M. Hashem 《Journal of Genetic Engineering and Biotechnology》2018,16(2):311-318
Keratinase are proteolytic enzymes which have gained much attention to convert keratinous wastes that cause huge environmental pollution problems. Ten microbial isolates were screened for their keratinase production. The most potent isolate produce 25.2?U/ml under static condition and was primarily identified by partial 16s rRNA gene sequence as Bacillus licheniformis ALW1. Optimization studies for the fermentation conditions increased the keratinase biosynthesis to 72.2?U/ml (2.9-fold). The crude extracellular keratinase was optimally active at pH 8.0 and temperature 65?°C with 0.7% soluble keratin as substrate. The produced B. licheniformis ALW1 keratinase exhibited a good stability over pH range from 7 to 9 and over a temperature range 50–60?°C for almost 90?min. The crude enzyme solution was able to degrade native feather up to 63% in redox free system. 相似文献
82.
Heba Elmansi Asya Orbano Maram Mashkour Heba Abo Shamiya Fathalla Belal 《Luminescence》2024,39(2):e4682
A new, proven, economical spectrofluorimetric approach has been used to determine the proton pump inhibitor omeprazole (OMP). This innovative technique is based on the ability of OMP to quench the native fluorescence of the mercurochrome dye in an acidic (pH 3.6) solution. Because it was discovered that quenching is proportional to the drug concentration, this dye was used as a sensor for OMP detection. The fluorescence intensity was measured at 518/540 nm, and its linear response ranged from 0.2–10.0 μg/mL with a linear coefficient of 0.9999. The computation yielded a limit of quantification (LOQ) of 0.20 μg/mL and a limit of detection (LOD) of 0.07 μg/mL. Every circumstance and element impacting the reaction product was examined in detail. Pharmacopeial standards carried out the validation. The approved method investigated several commercial preparations and formulations, and the results were favorably compared with those provided by a reference method. According to United States Pharmacopeia (USP) rules, content consistency for two distinct formulations was evaluated. 相似文献
83.
Anne M. Smardon Heba I. Diab Maureen Tarsio Theodore T. Diakov Negin Dehdar Nasab Robert W. West Patricia M. Kane 《Molecular biology of the cell》2014,25(3):356-367
The regulator of ATPase of vacuoles and endosomes (RAVE) complex is implicated in vacuolar H+-translocating ATPase (V-ATPase) assembly and activity. In yeast, rav1∆ mutants exhibit a Vma− growth phenotype characteristic of loss of V-ATPase activity only at high temperature. Synthetic genetic analysis identified mutations that exhibit a full, temperature-independent Vma− growth defect when combined with the rav1∆ mutation. These include class E vps mutations, which compromise endosomal sorting. The synthetic Vma− growth defect could not be attributed to loss of vacuolar acidification in the double mutants, as there was no vacuolar acidification in the rav1∆ mutant. The yeast V-ATPase a subunit is present as two isoforms, Stv1p in Golgi and endosomes and Vph1p in vacuoles. Rav1p interacts directly with the N-terminal domain of Vph1p. STV1 overexpression suppressed the growth defects of both rav1∆ and rav1∆vph1∆, and allowed RAVE-independent assembly of active Stv1p-containing V-ATPases in vacuoles. Mutations causing synthetic genetic defects in combination with rav1∆ perturbed the normal localization of Stv1–green fluorescent protein. We propose that RAVE is necessary for assembly of Vph1-containing V-ATPase complexes but not Stv1-containing complexes. Synthetic Vma− phenotypes arise from defects in Vph1p-containing complexes caused by rav1∆, combined with defects in Stv1p-containing V-ATPases caused by the second mutation. Thus RAVE is the first isoform-specific V-ATPase assembly factor. 相似文献
84.
Jamshed Iqbal Mohammed I. El-Gamal Syeda Abida Ejaz Joanna Lecka Jean Sévigny 《Journal of enzyme inhibition and medicinal chemistry》2018,33(1):479-484
Tissue-nonspecific alkaline phosphatase (TNAP) is an important isozyme of alkaline phosphatases, which plays different pivotal roles within the human body. Most importantly, it is responsible for maintaining the balanced ratio of phosphate and inorganic pyrophosphate, thus regulates the extracellular matrix calcification during bone formation and growth. The elevated level of TNAP has been linked to vascular calcification and end-stage renal diseases. Consequently, there is a need to search for highly potent and selective inhibitors of alkaline phosphatases (APs) for treatment of disorders associated with the over-expression of APs. Herein, a series of tricyclic coumarin sulphonate 1a-za with known antiproliferative activity, was evaluated for AP inhibition against human tissue nonspecific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP). The methylbenzenesulphonate derivative 1f (IC50?=?0.38?±?0.01?μM) was found to be the most active h-TNAP inhibitor. Another 4-fluorobenzenesulphonate derivative 1i (IC50?=?0.45?±?0.02?μM) was found as the strongest inhibitor of h-IAP. Some of the derivatives were also identified as highly selective inhibitors of APs. Detailed structure-activity relationship (SAR) was investigated to identify the functional groups responsible for the effective inhibition of AP isozymes. The study was also supported by the docking studies to rationalise the most possible binding site interactions of the identified inhibitors with the targeted enzymes. 相似文献
85.
Shankargouda Patil Sachin C. Sarode Heba Ashi Hosam Ali Baeshen A. Thirumal Raj Kamran H. Awan Shailesh Gondivkar Amol Ramchandra Gadbail Gargi S. Sarode 《Saudi Journal of Biological Sciences》2021,28(4):2223-2228
BackgroundArecoline found in areca nut causes oral submucous fibrosis. Triphala is an Ayurvedic medicinal preparation used to improve overall physical wellness that has also been shown to improve oral health.ObjectivesTo assess the activity of Triphala extract on arecoline-induced senescence in oral mucosal epithelial cells in vitro.Materials and methodsOral mucosal epithelial cells were isolated and cultured in vitro. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to assess the viability of treated cells, while senescence was assessed by senescence-associated-β-galactosidase staining. Cell surface marker expression was analyzed by flow cytometry. Finally, real-time quantitative polymerase chain reaction was performed to examine gene expression levels.ResultsTriphala extract (5 µg/mL) reversed the cell senescence activity of arecoline, as evidenced by reduced β-galactosidase activity, increased Ki-67 marker expression, and reduced expression of senescence-related genes p16 and p21.ConclusionTriphala extract helped to reduce the pathological effects of arecoline-induced pathogenesis.Clinical relevance.Arecoline found in the areca nut causes oral pathological conditions including oral submucous fibrosis. Our results showed that Triphala counteracted the adverse effects of arecoline, in particular, negating senescence in oral mucosal epithelial cells. As a translational effect, Triphala treatment could restore normal epithelial thickness in oral submucous fibrosis, thus reducing the clinical severity of the disease. This reestablishment of oral homeostasis would help to improve oral health-related quality of life in patients with oral submucous fibrosis. 相似文献
86.
Karima F. Mahrous Dalia M. Mabrouk Mohamad M. Aboelenin Heba A.M. Abd El‐Kader Alkhateib Y. Gaafar Abdelgayed M. Younes Mahmoud A. Mahmoud Wagdy K.B. Khalil Mohamed S. Hassanane 《Journal of peptide science》2020,26(11)
The antimicrobial activity of tilapia piscidin 3 (TP3) was determined in vitro against a locally isolated Aeromonas hydrophila. A 388 bp fragment was amplified from the TP3 cDNA and sequenced. The coding sequence (CDS) of TP3 was estimated to be 231 bp codes for 76 amino acids long and stop codon. In silico analysis was performed to detect both the signal peptide and the prodomain cleavage sites to follow the amino acids number 22 and 70, respectively. Based on this, a peptide 23 amino acids long with a remarkably high computed antimicrobial probability was synthesized and used in the subsequent experiments. The antimicrobial activity of TP3 was determined with minimum inhibitory concentration (MIC) and minim um bactericidal concentration (MBC) methods. TP3 exhibited relatively weak antimicrobial activities against the tested bacteria. A challenge experiment was then performed in Nile tilapia with low and high doses of A. hydrophila, followed by timely recognition; after 3, 6, 24 h, and 7 days of the specific TP3 gene expression, immunohistochemical localization was also performed. Histopathological examination revealed provoked inflammatory responses and congestion in the same organs of TP3 expression. Immunohistochemical localization showed that A. hydrophila induced tilapia fish to express TP3 after 24 h within the gills, intestine, hepatopancreas, spleen, and posterior kidney. In quantitative real time (RT)‐polymerase chain reaction analysis, the high dose showed higher mRNA expression levels than the low dose, and its expression levels increased in the A. hydrophila‐infected fish. It was therefore concluded that TP3 plays an essential role in fish immunity. 相似文献
87.
Pulmonary artery endothelial cells (PAEC) in an intact vessel are continually exposed to serum, but unless injured, do not proliferate, constrained by confluence. In contrast, pulmonary artery smooth muscle cells (PASMC) attain, and maintain, confluence in the presence of minimal serum, protected from serum’s stimulatory effects except when the endothelial barrier becomes more permeable. We hypothesized therefore, that confluent PASMC may be less constrained by contact inhibition in the presence of serum than PAEC and tested this idea by exposing confluent non-transformed human PAEC and PASMC to media containing increasing concentrations of fetal bovine serum (FBS) and determining cell growth over 7 days. PAEC that had attained confluence in low serum did not proliferate even when exposed to 5% serum, the highest concentration tested. In contrast, PASMC that attained confluence in low serum did proliferate once serum levels were increased, an effect that was dose dependent. Consistent with this observation, PASMC had more BrdU incorporation and a greater percentage of cells in S phase in 5% compared to 0.2% FBS, whereas no such difference was seen in PAEC. These results suggest that confluent human PAEC are resistant to the stimulatory effects of serum, whereas confluent PASMC can proliferate when serum levels are increased, an effect mediated in part by differences in phosphoinositide 3-kinase activation. This observation may be relevant to understanding the PASMC hyperplasia observed in humans and animals with pulmonary hypertension in which changes in endothelial permeability due to hypoxia or injury expose the underlying smooth muscle to serum. 相似文献
88.
Mohamed HI 《Biological trace element research》2011,144(1-3):1205-1218
The effect of lead acetate in the presence or absence of cowpea seeds irradiated with gamma rays on morphological criteria, protein electrophoresis, isozymes, and random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR) of leaves was investigated. A highly significant decrease in shoot and root length was observed upon lead acetate exposure (300 and 600?μM). On the other hand, in seeds irradiated with gamma rays (2, 5, and 8?krad), these morphological parameters were increased after lead acetate treatments. Meanwhile, all treatments (lead acetate and gamma rays) caused variations in number, intensity, and/or density of SDS electrophoretic bands of proteins. In addition, electrophoretic studies of esterase, acid phosphatase, peroxidase, polyphenol oxidase, catalase, and superoxide dismutase isozyme activities were increased with increasing the concentrations of lead acetate and gamma ray doses. The variation in DNA profile in response to lead acetate and gamma irradiation treatments was detected by RAPD-PCR technique. The result of RAPD analysis using the five primers indicated the appearance and disappearance of DNA polymorphic bands at all treatments (gamma rays and lead stress). The relatively high concentrations of lead acetate (600?μM) induced more changes in genomic DNA pattern. 相似文献
89.
Oxidative stress has been implicated to play a role in epileptogenesis and pilocarpine-induced seizures. The present study
aims to evaluate the antioxidant effects of curcumin, Nigella sativa oil (NSO) and valproate on the levels of malondialdehyde, nitric oxide, reduced glutathione and the activities of catalase,
Na+, K+-ATPase and acetylcholinesterase in the hippocampus of pilocarpine-treated rats. The animal model of epilepsy was induced
by pilocarpine and left for 22 days to establish the chronic phase of epilepsy. These animals were then treated with curcumin,
NSO or valproate for 21 days. The data revealed evidence of oxidative stress in the hippocampus of pilocarpinized rats as
indicated by the increased nitric oxide levels and the decreased glutathione levels and catalase activity. Moreover, a decrease
in Na+, K+-ATPase activity and an increase in acetylcholinesterase activity occurred in the hippocampus after pilocarpine. Treatment
with curcumin, NSO or valproate ameliorated most of the changes induced by pilocarpine and restored Na+, K+-ATPase activity in the hippocampus to control levels. This study reflects the promising anticonvulsant and potent antioxidant
effects of curcumin and NSO in reducing oxidative stress, excitability and the induction of seizures in epileptic animals
and improving some of the adverse effects of antiepileptic drugs. 相似文献
90.
Farag M Ahmed MH Yousef H Abdel-Rahman AA 《Zeitschrift für Naturforschung. C, Journal of biosciences》2011,66(3-4):129-135
A crude acetone extract and oil of ripe fruits from Melia azedarach L. were evaluated against the 2nd and 4th instar larvae of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Both oil and extract exhibited highly significant growth inhibition at all concentrations tested, while the oil of M. azedarach recorded higher insecticidal activity against both instars than the crude extract. GC-MS analysis of the oil revealed the presence of linoleic acid methyl ester, oleic acid methyl ester, and free oleic acid as the main components in addition to hexadecanol, palmitic acid, methyl esters of stearic acid and myristic acid. Fatty acids and their esters were not only the main constituents of essential oil from the ripe fruits of M. azedarach, but also mainly responsible for the insecticidal and growth inhibition activity against S. littoralis. 相似文献