首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4810篇
  免费   450篇
  国内免费   2篇
  2023年   15篇
  2022年   32篇
  2021年   119篇
  2020年   73篇
  2019年   86篇
  2018年   84篇
  2017年   78篇
  2016年   154篇
  2015年   240篇
  2014年   253篇
  2013年   287篇
  2012年   418篇
  2011年   427篇
  2010年   258篇
  2009年   196篇
  2008年   334篇
  2007年   350篇
  2006年   270篇
  2005年   302篇
  2004年   269篇
  2003年   228篇
  2002年   236篇
  2001年   36篇
  2000年   48篇
  1999年   54篇
  1998年   59篇
  1997年   34篇
  1996年   32篇
  1995年   28篇
  1994年   16篇
  1993年   13篇
  1992年   12篇
  1991年   14篇
  1990年   12篇
  1989年   10篇
  1987年   8篇
  1986年   9篇
  1985年   8篇
  1984年   7篇
  1983年   13篇
  1982年   9篇
  1981年   8篇
  1980年   9篇
  1979年   8篇
  1978年   8篇
  1977年   9篇
  1975年   6篇
  1974年   10篇
  1973年   6篇
  1969年   6篇
排序方式: 共有5262条查询结果,搜索用时 26 毫秒
101.
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.Plant cells are surrounded by a flexible yet durable extracellular matrix that makes up the cell wall. This structure offers mechanical strength that counters osmotically driven turgor pressure, is an important factor for water movement in plants, acts as a physical barrier against pathogens (Somerville et al., 2004), and is a determining factor for plant cell morphogenesis. Hence, the cell wall plays a central role in plant biology.Two main types of cell walls can typically be distinguished: the primary and the secondary cell wall. The major load-bearing component in both of these cell walls is the β-1,4-linked glucan polymer cellulose (Somerville et al., 2004). Cellulose polymers are synthesized by plasma membrane (PM)-localized cellulose synthase (CesA) complexes (Mueller and Brown, 1980), which contain several CesA subunits with similar amino acid sequences (Mutwil et al., 2008a). The primary wall CesA complexes are believed to be assembled in the Golgi and are subsequently delivered to the PM via vesicular trafficking (Gutierrez et al., 2009), sometimes associated with Golgi pausing (Crowell et al., 2009). Furthermore, the primary wall CesA complexes are preferentially inserted into the PM at sites that coincide with cortical microtubules (MTs), which subsequently guide cellulose microfibril deposition (Gutierrez et al., 2009). Hence, the cortical MT array is a determinant for multiple aspects of primary wall cellulose production.The actin cytoskeleton plays a crucial role in organized deposition of cell wall polymers in many cell types, including cellulose-related polymers and pectins in tip-growing cells, such as pollen tubes and root hairs (Hu et al., 2003; Chen et al., 2007). Thus, actin-depolymerizing drugs and genetic manipulation of ACTIN genes impair directed expansion of tip-growing cells and long-distance transport of Golgi bodies with vesicles to growing regions (Ketelaar et al., 2003; Szymanski, 2005). In diffusely growing cells in roots and hypocotyls, loss of anisotropic growth has also been observed in response to mutations to vegetative ACTIN genes and to actin-depolymerizing and -stabilizing drugs (Baluska et al., 2001; Kandasamy et al., 2009). While actin is clearly important for cell wall assembly, it is less clear what precise roles it plays.One well-known function of actin in higher plants is to support intracellular movement of cytoplasmic organelles via actomyosin-based motility (Geisler et al., 2008; Szymanski, 2009). During primary wall synthesis in interphase cells, treatment with the actin assembly inhibitor latrunculin B (LatB) led to inhibition of Golgi motility and pronounced inhomogenities in CesA density at the PM (Crowell et al., 2009; Gutierrez et al., 2009) that coincided with the density of underlying and immobile Golgi bodies (Gutierrez et al., 2009). These results suggested that Golgi motility is important for CesA distribution (Gutierrez et al., 2009). The actin cytoskeleton also appears to be important for secondary wall cellulose microfibril deposition. For example, longitudinal actin filaments (AFs) define the movement of secondary wall CesA-containing Golgi bodies in developing xylem vessels (Wightman and Turner, 2008). In addition, it has been proposed that the AFs also can regulate the delivery of the secondary wall CesA complex to the PM via pausing of the Golgi (Wightman and Turner, 2008). It is therefore clear that actin organization is important for CesA distribution and for the pattern of cellulose microfibril deposition.Despite the above findings, very few reports have undertaken detailed studies to elucidate the role of the actin cytoskeleton in the distribution and trafficking of specific proteins in plant cells. Here, we have investigated the intracellular trafficking of CesA-containing vesicles and delivery of CesAs to the PM, in the context of the actin cytoskeleton. We quantitatively demonstrate that the organization of the actin cytoskeleton regulates CesA-containing Golgi distribution and the exocytic and endocytic rate of the CesAs. However, actin organization has no effect on the localized insertion of CesAs at sites of MTs at the PM.  相似文献   
102.
Macrophages play a key role in host defense and in tissue repair after injury. Emerging evidence suggests that macrophage dysfunction in states of lipid excess can contribute to the development of insulin resistance and may underlie inflammatory complications of diabetes. Ceramides are sphingolipids that modulate a variety of cellular responses including cell death, autophagy, insulin signaling, and inflammation. In this study we investigated the intersection between TLR4-mediated inflammatory signaling and saturated fatty acids with regard to ceramide generation. Primary macrophages treated with lipopolysaccharide (LPS) did not produce C16 ceramide, whereas palmitate exposure led to a modest increase in this sphingolipid. Strikingly, the combination of LPS and palmitate led to a synergistic increase in C16 ceramide. This response occurred via cross-talk at the level of de novo ceramide synthesis in the ER. The synergistic response required TLR4 signaling via MyD88 and TIR-domain-containing adaptor-inducing interferon beta (TRIF), whereas palmitate-induced ceramide production occurred independent of these inflammatory molecules. This ceramide response augmented IL-1β and TNFα release, a process that may contribute to the enhanced inflammatory response in metabolic diseases characterized by dyslipidemia.  相似文献   
103.
The gene orfX is conserved among all staphylococci, and its complete sequence is maintained upon insertion of the staphylococcal chromosome cassette mec (SCCmec) genomic island, containing the gene encoding resistance to β-lactam antibiotics (mecA), into its C terminus. The function of OrfX has not been determined. We show that OrfX was constitutively produced during growth, that orfX could be inactivated without altering bacterial growth, and that insertion of SCCmec did not alter gene expression. We solved the crystal structure of OrfX at 1.7 Å and found that it belongs to the S-adenosyl-l-methionine (AdoMet)-dependent α/β-knot superfamily of SPOUT methyltransferases (MTases), with a high structural homology to YbeA, the gene product of the Escherichia coli 70 S ribosomal MTase RlmH. MTase activity was confirmed by demonstrating the OrfX-dependent methylation of the Staphylococcus aureus 70 S ribosome. When OrfX was crystallized in the presence of its AdoMet substrate, we found that each monomer of the homodimeric structure bound AdoMet in its active site. Solution studies using isothermal titration calorimetry confirmed that each monomer bound AdoMet but with different binding affinities (Kd = 52 ± 0.4 and 606 ± 2 μm). In addition, the structure shows that the AdoMet-binding pocket, formed by a deep trefoil knot, contains a bound phosphate molecule, which is the likely nucleotide methylation site. This study represents the first characterization of a staphylococcal ribosomal MTase and provides the first crystal structure of a member of the α/β-knot superfamily of SPOUT MTases in the RlmH or COG1576 family with bound AdoMet.  相似文献   
104.
Humans and other higher primates are unique among mammals in using complement receptor 1 (CR1, CD35) on red blood cells (RBC) to ligate complement-tagged inflammatory particles (immune complexes, apoptotic/necrotic debris, and microbes) in the circulation for quiet transport to the sinusoids of spleen and liver where resident macrophages remove the particles, but allow the RBC to return unharmed to the circulation. This process is called immune-adherence clearance. In this study we found using luminometric- and fluorescence-based methods that ligation of CR1 on human RBC promotes ATP release. Our data show that CR1-mediated ATP release does not depend on Ca2+ or enzymes previously shown to mediate an increase in membrane deformability promoted by CR1 ligation. Furthermore, ATP release following CR1 ligation increases the mobility of the lipid fraction of RBC membranes, which in turn facilitates CR1 clustering, and thereby enhances the binding avidity of complement-opsonized particles to the RBC CR1. Finally, we have found that RBC-derived ATP has a stimulatory effect on phagocytosis of immune-adherent immune complexes.  相似文献   
105.
Predictive models, based on environmental and water quality variables, have been used to improve the timeliness and accuracy of recreational water quality assessments, but their effectiveness has not been studied in inland waters. Sampling at eight inland recreational lakes in Ohio was done in order to investigate using predictive models for Escherichia coli and to understand the links between E. coli concentrations, predictive variables, and pathogens. Based upon results from 21 beach sites, models were developed for 13 sites, and the most predictive variables were rainfall, wind direction and speed, turbidity, and water temperature. Models were not developed at sites where the E. coli standard was seldom exceeded. Models were validated at nine sites during an independent year. At three sites, the model resulted in increased correct responses, sensitivities, and specificities compared to use of the previous day''s E. coli concentration (the current method). Drought conditions during the validation year precluded being able to adequately assess model performance at most of the other sites. Cryptosporidium, adenovirus, eaeA (E. coli), ipaH (Shigella), and spvC (Salmonella) were found in at least 20% of samples collected for pathogens at five sites. The presence or absence of the three bacterial genes was related to some of the model variables but was not consistently related to E. coli concentrations. Predictive models were not effective at all inland lake sites; however, their use at two lakes with high swimmer densities will provide better estimates of public health risk than current methods and will be a valuable resource for beach managers and the public.  相似文献   
106.
Fossil footprints preserve the only direct evidence of the external foot morphologies and gaits of extinct hominin taxa. However, their interpretation requires an understanding of the complex interaction among foot anatomy, foot function, and soft sediment mechanics. We applied an experimental approach aimed at understanding how one measure of foot function, the distribution of plantar pressure, influences footprint topography.  相似文献   
107.
This study addresses how the human temporal bone develops the population-specific pattern of morphology observed among adults and at what point in ontogeny those patterns arise. Three-dimensional temporal bone shape was captured using 15 landmarks on ontogenetic series of specimens from seven modern human populations. Discriminant function analysis revealed that population-specific temporal bone morphology is evident early in ontogeny, with significant shape differences among many human populations apparent prior to the eruption of the first molar. As early as five years of age, temporal bone shape reflects population history and can be used to reliably sort populations, although those in closer geographic proximity and molecular affinity are more likely to be misclassified. The deviation of cold-adapted populations from this general pattern of congruence between temporal bone morphology and genetic distances, identified in previous work, was confirmed here in adult and subadult specimens, and was revealed to occur earlier in ontogeny than previously recognized. Significant differences exist between the ontogenetic trajectories of some pairs of populations, but not among others, and the angles of these trajectories do not reflect genetic relationships or final adult temporal bone size. Significant intrapopulation differences are evident early in ontogeny, with differences becoming amplified by divergent trajectories in some groups. These findings elucidate how the congruence between adult human temporal bone morphology and population history develops, and reveal that this pattern corresponds closely to that described previously for facial ontogeny.  相似文献   
108.
Accurate potential measurements in electrophysiological experiments require correction for liquid junction potentials (LJPs), and, in patch-clamping especially, these can often be ~5–10 mV or more. They can be either calculated, if ion mobilities are known, or measured directly. We describe an optimised system to directly measure LJPs with a patch-clamp amplifier, using as a reference electrode, a freshly-cut 3 M KCl-agar salt-bridge (in polyethylene tubing) with its tip cut off by at least 5 mm during solution changes to eliminate its solution-history-dependent effects. We quantify such history-dependent effects and complement this with a de-novo theoretical analysis of salt diffusion to and from the salt-bridge. Our analysis and experimental results validate the optimised methodology for measuring LJPs, and the use of the Henderson equation for accurately calculating them. The use of this equation is also assessed and generally validated in the light of rigorous Nernst–Planck–Poisson and other numerical simulations and analytical studies of LJPs over recent decades. Digitizing, recording and amplifying the measured potentials increases their accuracy. The measured potentials still need correction for small, well-defined calculable, shifts in LJPs at the 3 M KCl-agar reference. Using this technique, we have measured changes in LJPs for diluted solutions of NaCl, LiCl, KCl, CsCl and NaF, obtaining excellent agreement within ±0.1 mV of predicted values, calculated using ion activities. Our de novo LJP measurements of biionic combinations of the above undiluted salts, and NaI and NaF (with halide anions I? and F?), generally also gave excellent agreement with predicted values.  相似文献   
109.
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.  相似文献   
110.
Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (∼80 Å) to HNF4α, binding with high affinity Kd ∼250–300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction altered protein secondary structure. Finally, L-FABP potentiated transactivation of HNF4α in COS7 cells. Taken together, these data suggest that L-FABP provides a signaling path to HNF4α activation in the nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号