首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6992篇
  免费   655篇
  国内免费   2篇
  7649篇
  2023年   21篇
  2022年   61篇
  2021年   152篇
  2020年   87篇
  2019年   107篇
  2018年   113篇
  2017年   106篇
  2016年   200篇
  2015年   333篇
  2014年   334篇
  2013年   394篇
  2012年   531篇
  2011年   555篇
  2010年   344篇
  2009年   276篇
  2008年   450篇
  2007年   464篇
  2006年   358篇
  2005年   400篇
  2004年   372篇
  2003年   335篇
  2002年   293篇
  2001年   75篇
  2000年   86篇
  1999年   96篇
  1998年   98篇
  1997年   50篇
  1996年   44篇
  1995年   51篇
  1994年   34篇
  1993年   51篇
  1992年   36篇
  1991年   45篇
  1990年   45篇
  1989年   31篇
  1988年   33篇
  1987年   35篇
  1986年   44篇
  1985年   37篇
  1984年   37篇
  1983年   37篇
  1982年   32篇
  1981年   34篇
  1979年   30篇
  1978年   30篇
  1977年   23篇
  1976年   22篇
  1974年   27篇
  1973年   25篇
  1972年   19篇
排序方式: 共有7649条查询结果,搜索用时 0 毫秒
941.
Constitutive proteasomes and immunoproteasomes shape the peptide repertoire presented by major histocompatibility complex class I (MHC-I) molecules by harboring different sets of catalytically active subunits. Here, we present the crystal structures of constitutive proteasomes and immunoproteasomes from mouse in the presence and absence of the epoxyketone inhibitor PR-957 (ONX 0914) at 2.9 ? resolution. Based on our X-ray data, we propose a unique catalytic feature for the immunoproteasome subunit β5i/LMP7. Comparison of ligand-free and ligand-bound proteasomes reveals conformational changes in the S1 pocket of β5c/X but not β5i, thereby explaining the selectivity of PR-957 for β5i. Time-resolved structures of yeast proteasome:PR-957 complexes indicate that ligand docking to the active site occurs only via the reactive head group and the P1 side chain. Together, our results support structure-guided design of inhibitory lead structures selective for immunoproteasomes that are linked to cytokine production and diseases like cancer and autoimmune disorders.  相似文献   
942.
The therapeutic utility of siRNAs is limited by the requirement for complex formulations to deliver them to tissues. If potent single-stranded RNAs could be identified, they would provide a simpler path to pharmacological agents. Here, we describe single-stranded siRNAs (ss-siRNAs) that silence gene expression in animals absent lipid formulation. Effective ss-siRNAs were identified by iterative design by determining structure-activity relationships correlating chemically modified single strands and Argonaute 2 (AGO2) activities, potency in cells, nuclease stability, and pharmacokinetics. We find that the passenger strand is not necessary for potent gene silencing. The guide-strand activity requires AGO2, demonstrating action through the RNAi pathway. ss-siRNA action requires a 5' phosphate to achieve activity in?vivo, and we developed a metabolically stable 5'-(E)-vinylphosphonate (5'-VP) with conformation and sterioelectronic properties similar to the natural phosphate. Identification of potent ss-siRNAs offers an additional option for RNAi therapeutics and an alternate perspective on RNAi mechanism.  相似文献   
943.
Slit3 is a large molecule with multiple domains and belongs to axon guidance families. To date, the biological functions of Slit3 are still largely unknown. Our recent study demonstrated that the N-terminal fragment of Slit3 is a novel angiogenic factor. In this study, we examined the biological function of the C-terminal fragment of human Slit3 (HSCF). The HSCF showed a high-affinity binding to heparin. The binding appeared to be heparin/heparan sulfate-specific and depends on the size, the degree of sulfation, the presence of N- and 6-O-sulfates and carboxyl moiety of the polysaccharide. Functional studies observed that HSCF inhibited antithrombin binding to heparin and neutralized the antifactor IIa and Xa activities of heparin and the antifactor IIa activity of low-molecular-weight heparin (LMWH). Thromboelastography analysis observed that HSCF reversed heparin's anticoagulation in global plasma coagulation. Taken together, these observations demonstrate that HSCF is a novel heparin-binding protein that potently neutralizes heparin's anticoagulation activity. This study reveals a potential for HSCF to be developed as a new antidote to treat overdosing of both heparin and LMWH in clinical applications.  相似文献   
944.
Necroptosis is a regulated caspase-independent cell death pathway with morphological features resembling passive non-regulated necrosis. Several diverse structure classes of necroptosis inhibitors have been reported to date, including a series of 3,3a,4,5-tetrahydro-2H-benz[g]indazoles (referred to as the Nec-3 series) displaying potent activity in cellular assays. However, evaluation of the tricyclic necroptosis inhibitor's stability in mouse liver microsomes indicated that they were rapidly degraded. A structure-activity relationship (SAR) study of this compound series revealed that increased liver microsomal stability could be accomplished by modification of the pendent phenyl ring and by introduction of a hydrophilic substituent (i.e., α-hydroxyl) to the acetamide at the 2-position of the tricyclic ring without significantly compromising necroptosis inhibitory activity. Further increases in microsomal stability could be achieved by utilizing the 5,5-dioxo-3-phenyl-2,3,3a,4-tetrahydro-[1]benzothiopyrano[4,3-c]pyrazoles. However, in this case necroptosis inhibitory activity was not maintained. Overall, these results provide a strategy for generating potent and metabolically stable tricyclic necrostatin analogs (e.g., 33, LDN-193191) potentially suitable for in vivo studies.  相似文献   
945.
A number of (1H-1,2,3-triazol-1-yl)benzo[d]thiazoles were synthesized utilizing a versatile Cu-catalyzed azide-alkyne click reaction (CuAAC) on tautomeric benzo[4,5]thiazolo[3,2-d]tetrazole (1) and 2-azidobenzo[d]thiazole (2) starting materials. Moreover, one of the resulting products of this investigation, triazolbenzo[d]thiazole 22, was found to possess significant neuroprotective activity in human neuroblastoma (SH-SY5Y) cells.  相似文献   
946.
Increases in woody vegetation and declines in grasses in arid and semi-arid ecosystems have occurred globally since the 1800s, but the mechanisms driving this major land-cover change remain uncertain and controversial. Working in a shrub-encroached grassland in the northern Chihuahuan Desert where grasses and shrubs typically differ in leaf-level nitrogen allocation, photosynthetic pathway, and root distribution, we asked if differences in leaf-level ecophysiology could help explain shrub proliferation. We predicted that the relative performance of grasses and shrubs would vary with soil moisture due to the different morphological and physiological characteristics of the two life-forms. In a 2-year experiment with ambient, reduced, and enhanced precipitation during the monsoon season, respectively, the encroaching C(3) shrub (honey mesquite Prosopis glandulosa) consistently and substantially outperformed the historically dominant C(4) grass (black grama Bouteloua eriopoda) in terms of photosynthetic rates while also maintaining a more favorable leaf water status. These differences persisted across a wide range of soil moisture conditions, across which mesquite photosynthesis was decoupled from leaf water status and moisture in the upper 50 cm of the soil profile. Mesquite's ability to maintain physiologically active leaves for a greater fraction of the growing season than black grama potentially amplifies and extends the importance of physiological differences. These physiological and phenological differences may help account for grass displacement by shrubs in drylands. Furthermore, the greater sensitivity of the grass to low soil moisture suggests that grasslands may be increasingly susceptible to shrub encroachment in the face of the predicted increases in drought intensity and frequency in the desert of the southwestern USA.  相似文献   
947.
Although spatial heterogeneity of prey and landscapes are known to contribute to variation around predator‐prey functional response models, few studies have quantified these effects. We illustrate a new approach using data from winter movement paths of GPS‐collared wolves in the Rocky Mountains of Canada and time‐to‐event models with competing risks for measuring the effect of prey and landscape characteristics on the time‐to‐kill, which is the reciprocal of attack rate (aN) in a Holling's functional response. We evaluated 13 a priori models representing hypothesized mechanisms influencing attack rates in a heterogeneous landscape with two prey types. Models ranged from variants on Holling's disc equation, including search rate and prey density, to a full model including prey density and patchiness, search rates, satiation, and landscape features, which were measured along the wolf's movement path. Movement rates of wolves while searching explained more of the variation in time‐to‐kill than prey densities. Wolves did not compensate for low prey density by increasing movement rates and there was little evidence that spatial aggregation of prey influenced attack rates in this multi‐prey system. The top model for predicting time‐to‐kill included only search rate and landscape features. Wolves killed prey more quickly in flat terrain, likely due to increased vulnerability from accumulated snow, whereas attack rates were lower when wolves hunted near human‐made features presumably due to human disturbance. Understanding the sources of variation in attack rates provides refinements to functional response models that can lead to more effective predator–prey management in human‐dominated landscapes.  相似文献   
948.
949.
As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. Honey bees and bumble bees appear to have a simple intestinal bacterial fauna that includes acidophilic bacteria. Here, we explore the hypothesis that sweat bees can acquire acidophilic bacteria from the environment. To quantify bacterial communities associated with two species of North American and one species of Neotropical sweat bees, we conducted 16S rDNA amplicon 454 pyrosequencing of bacteria associated with the bees, their brood cells and their nests. Lactobacillus spp. were the most abundant bacteria in many, but not all, of the samples. To determine whether bee-associated lactobacilli can also be found in the environment, we reconstructed the phylogenetic relationships of the genus Lactobacillus. Previously described groups that associate with Bombus and Apis appeared relatively specific to these genera. Close relatives of several bacteria that have been isolated from flowers, however, were isolated from bees. Additionally, all three sweat bee species associated with lactobacilli related to flower-associated lactobacilli. These data suggest that there may be at least two different means by which bees acquire putative probiotics. Some lactobacilli appear specific to corbiculate apids, possibly because they are largely maternally inherited (vertically transmitted). Other lactobacilli, however, may be regularly acquired from environmental sources such as flowers. Sweat bee-associated lactobacilli were found to be abundant in the pollen and frass inside the nests of halictids, suggesting that they could play a role in suppressing the growth of moulds and other spoilage organisms.  相似文献   
950.
In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号