首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4815篇
  免费   461篇
  国内免费   2篇
  5278篇
  2023年   18篇
  2022年   54篇
  2021年   119篇
  2020年   73篇
  2019年   86篇
  2018年   81篇
  2017年   77篇
  2016年   154篇
  2015年   240篇
  2014年   253篇
  2013年   291篇
  2012年   423篇
  2011年   423篇
  2010年   259篇
  2009年   194篇
  2008年   329篇
  2007年   348篇
  2006年   266篇
  2005年   299篇
  2004年   269篇
  2003年   228篇
  2002年   236篇
  2001年   33篇
  2000年   45篇
  1999年   54篇
  1998年   60篇
  1997年   35篇
  1996年   30篇
  1995年   28篇
  1994年   16篇
  1993年   13篇
  1992年   13篇
  1991年   15篇
  1990年   15篇
  1989年   12篇
  1987年   7篇
  1986年   14篇
  1985年   7篇
  1984年   7篇
  1983年   14篇
  1982年   9篇
  1981年   8篇
  1980年   8篇
  1978年   10篇
  1977年   11篇
  1974年   9篇
  1972年   6篇
  1967年   6篇
  1966年   6篇
  1965年   6篇
排序方式: 共有5278条查询结果,搜索用时 15 毫秒
91.
The formation of ethanol, xylitol, ribitol, arabitol and acetic acid from D-xylose byPachysolen tannophilus correlated with the limitation of growth. The correlation was consistent with these products being secondary metabolites.Issued as NRCC Publication Number 24259.  相似文献   
92.
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees’ access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.  相似文献   
93.
94.
The dorsal heart of the Indian stick insect, Carausius morosus, is responsible for the anterograde flow of hemolymph to the aorta and into the body cavity. The contraction frequency of the insect heart is known to be influenced by several substances of neural source. Here, a semi‐exposed heart assay was employed to study the effect of an aminergic substance (octopamine) and three neuropeptides (C. morosus hypertrehalosemic hormone [Carmo‐HrTH], crustacean cardioactive peptide [CCAP], and proctolin) on heart contraction. The contraction frequency was measured as beats per minute in adults ligated between the head and the prothorax. All three investigated neuropeptides had a stimulatory effect on heart contraction that lasted approximately 6 min, after which the normal heart beat rate was restored. Proctolin and CCAP stimulated the rate of heart beat also in unligated stick insects, whereas Carmo‐HrTH was active only in ligated insects. The latter could suggest that when the stick insect is not ligated, a competing substance may be released from the head of C. morosus; the competing substance is, apparently, not physiologically active but it binds or blocks access to the receptor of Carmo‐HrTH‐II, thereby rendering the HrTH peptide “not active.” In ligated stick insects, 6.7 × 10?8 M Carmo‐HrTH‐II significantly increased the heart beat rate; higher doses resulted in no further increase, suggesting the saturation of the HrTH receptor. Octopamine inhibited the rate at which the heart contracted in a dose‐dependent manner; inhibition was achieved with 10?4 M of octopamine.  相似文献   
95.
Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.  相似文献   
96.
Nitrotyrosine is widely used as a marker of post-translational modification by the nitric oxide ((.)NO, nitrogen monoxide)-derived oxidant peroxynitrite (ONOO(-)). However, since the discovery that myeloperoxidase (MPO) and eosinophil peroxidase (EPO) can generate nitrotyrosine via oxidation of nitrite (NO(2)(-)), several questions have arisen. First, the relative contribution of peroxidases to nitrotyrosine formation in vivo is unknown. Further, although evidence suggests that the one-electron oxidation product, nitrogen dioxide ((*)NO(2)), is the primary species formed, neither a direct demonstration that peroxidases form this gas nor studies designed to test for the possible concomitant formation of the two-electron oxidation product, ONOO(-), have been reported. Using multiple distinct models of acute inflammation with EPO- and MPO-knockout mice, we now demonstrate that leukocyte peroxidases participate in nitrotyrosine formation in vivo. In some models, MPO and EPO played a dominant role, accounting for the majority of nitrotyrosine formed. However, in other leukocyte-rich acute inflammatory models, no contribution for either MPO or EPO to nitrotyrosine formation could be demonstrated. Head-space gas analysis of helium-swept reaction mixtures provides direct evidence that leukocyte peroxidases catalytically generate (*)NO(2) formation using H(2)O(2) and NO(2)(-) as substrates. However, formation of an additional oxidant was suggested since both enzymes promote NO(2)(-)-dependent hydroxylation of targets under acidic conditions, a chemical reactivity shared with ONOO(-) but not (*)NO(2). Collectively, our results demonstrate that: 1) MPO and EPO contribute to tyrosine nitration in vivo; 2) the major reactive nitrogen species formed by leukocyte peroxidase-catalyzed oxidation of NO(2)(-) is the one-electron oxidation product, (*)NO(2); 3) as a minor reaction, peroxidases may also catalyze the two-electron oxidation of NO(2)(-), producing a ONOO(-)-like product. We speculate that the latter reaction generates a labile Fe-ONOO complex, which may be released following protonation under acidic conditions such as might exist at sites of inflammation.  相似文献   
97.
The distribution of P2X(2) purine receptor subunit immunoreactivity has been investigated in the mouse gastrointestinal tract. Immunoreactivity occurred in intraganglionic laminar endings (IGLEs) associated with myenteric ganglia throughout the gastrointestinal tract. In the esophagus, IGLEs supplied every myenteric ganglion. The proportion of ganglia supplied decreased from 85% in the stomach to 10% in the ileum, and from 50% in the caecum to 15% in the distal colon. There was substantial loss of IGLEs from myenteric ganglia of all abdominal regions after bilateral subdiaphragmatic section of the vagus nerves. IGLEs in the esophagus consisted of dense clusters of punctate immunoreactive varicosities. In the stomach and duodenum they had prominent lamellar processes and irregular, but smaller, lamellae were found in other regions. Rare immunoreactive IGLEs occurred in the submucosa of the distal colon. P2X(2) receptor immunoreactivity was on the surfaces and in the cytoplasm of a minority of nerve cells in myenteric ganglia. It is concluded that P2X(2) purine receptor immunoreactivity is a feature of IGLEs in the mouse, and that P2X receptor agonists may modulate sensitivity of the IGLEs.  相似文献   
98.
Myostatin inhibits myogenesis. Therefore, we sought to determine if mice lacking the myostatin gene [Mstn(-/-)] would lose less muscle mass than wild-type mice during 7 days of hindlimb suspension (HS). Male Mstn(-/-) and wild-type (C57) mice were subjected to HS or served as ground-based controls (n = 6/group). Wild-type mice lost 8% of body mass and approximately 13% of wet mass from biceps femoris, quadriceps femoris, and soleus, whereas the mass of extensor digitorum longus (EDL) was unchanged after HS. Unexpectedly, Mstn(-/-) mice lost more body (13%, P < 0.05) and quadriceps femoris (17%, P < 0.05) mass than wild-type mice and lost 33% of EDL mass (P < 0.01) after HS. Protein expression of myostatin in biceps femoris and quadriceps femoris was not altered, whereas expression of MyoD, Myf-5, and myogenin increased in wild-type mice and tended to decrease in muscles of Mstn(-/-) mice. These data suggest that HS induced myogenesis in wild-type mice to counter atrophy, whereas myogenesis was not induced in Mstn(-/-) mice, thereby resulting in a greater loss of muscle mass.  相似文献   
99.
To determine the importance of fibroblast growth factor receptors (fgfrs) 1 and 2 in the metanephric mesenchyme, we generated conditional knockout mice (fgfr(Mes-/-)). Fgfr1(Mes-/-) and fgfr2(Mes-/-) mice develop normal-appearing kidneys. Deletion of both receptors (fgfr1/2(Mes-/-)) results in renal aplasia. Fgfr1/2(Mes-/-) mice develop a ureteric bud (and occasionally an ectopic bud) that does not elongate or branch, and the mice do not develop an obvious metanephric mesenchyme. By in situ hybridization, regions of mutant mesenchyme near the ureteric bud(s) express Eya1 and Six1, but not Six2, Sall1, or Pax2, while the ureteric bud expresses Ret and Pax2 normally. Abnormally high rates of apoptosis and relatively low rates of proliferation are present in mutant mesenchyme dorsal to the mutant ureteric bud at embryonic day (E) 10.5, while mutant ureteric bud tissues undergo high rates of apoptosis by E11.5. Thus, fgfr1 and fgfr2 together are critical for normal formation of metanephric mesenchyme. While the ureteric bud(s) initiates, it does not elongate or branch infgfr1/2(Mes-/-) mice. In metanephric mesenchymal rudiments, fgfr1 and fgfr2 appear to function downstream of Eya1 and Six1, but upstream of Six2, Sall1, and Pax2. Finally, this is the first example of renal aplasia in a conditional knockout model.  相似文献   
100.
The Mo(V) forms of the Tyr343Phe (Y343F) mutant of human sulfite oxidase (SO) have been investigated by continuous wave (CW) and variable frequency pulsed EPR spectroscopies as a function of pH. The CW EPR spectrum recorded at low-pH (∼6.9) has g-values similar to those known for the low-pH form of the native vertebrate SO (original lpH form); however, unlike the spectrum of original lpH SO, it does not show any hyperfine splittings from a nearby exchangeable proton. The detailed electron spin echo (ESE) envelope modulation (ESEEM) and pulsed electron-nuclear double resonance (ENDOR) experiments also did not reveal any nearby protons that could belong to an exchangeable ligand at the molybdenum center. These results suggest that under low-pH conditions the active site of Y343F SO is in the “blocked” form, with the Mo(V) center coordinated by sulfate. With increasing pH the EPR signal from the “blocked” form decreases, while a signal similar to that of the original lpH form appears and becomes the dominant signal at pH >9. In addition, both the CW EPR and ESE-detected field-sweep spectra reveal a considerable contribution from a signal similar to that usually detected for the high-pH form of native vertebrate SO (original hpH form). The nearby exchangeable protons in both of the component forms observed at high-pH were studied by the ESEEM spectroscopy. These results indicate that the Y343F mutation increases the apparent pKa of the transition from the lpH to hpH forms by ∼2 pH units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号