全文获取类型
收费全文 | 4759篇 |
免费 | 445篇 |
国内免费 | 2篇 |
专业分类
5206篇 |
出版年
2023年 | 17篇 |
2022年 | 53篇 |
2021年 | 119篇 |
2020年 | 72篇 |
2019年 | 87篇 |
2018年 | 80篇 |
2017年 | 77篇 |
2016年 | 153篇 |
2015年 | 239篇 |
2014年 | 251篇 |
2013年 | 285篇 |
2012年 | 420篇 |
2011年 | 421篇 |
2010年 | 258篇 |
2009年 | 196篇 |
2008年 | 327篇 |
2007年 | 350篇 |
2006年 | 267篇 |
2005年 | 299篇 |
2004年 | 267篇 |
2003年 | 230篇 |
2002年 | 237篇 |
2001年 | 34篇 |
2000年 | 44篇 |
1999年 | 54篇 |
1998年 | 60篇 |
1997年 | 34篇 |
1996年 | 31篇 |
1995年 | 28篇 |
1994年 | 16篇 |
1993年 | 12篇 |
1992年 | 11篇 |
1991年 | 13篇 |
1990年 | 11篇 |
1989年 | 10篇 |
1987年 | 7篇 |
1986年 | 8篇 |
1985年 | 5篇 |
1984年 | 8篇 |
1983年 | 11篇 |
1982年 | 8篇 |
1981年 | 8篇 |
1980年 | 8篇 |
1979年 | 6篇 |
1978年 | 8篇 |
1977年 | 8篇 |
1974年 | 9篇 |
1973年 | 4篇 |
1967年 | 4篇 |
1965年 | 4篇 |
排序方式: 共有5206条查询结果,搜索用时 26 毫秒
31.
Alison Shapcott Heather James Laura Simmons Yoko Shimizu Lauren Gardiner David Rabehevitra Rokiman Letsara Stuart Cable John Dransfield William J. Baker Mijoro Rakotoarinivo 《Ecology and evolution》2020,10(6):3120-3137
Madagascar is home to 208 indigenous palm species, almost all of them endemic and >80% of which are endangered. We undertook complete population census and sampling for genetic analysis of a relatively recently discovered giant fan palm, the Critically Endangered Tahina spectablis in 2008 and 2016. Our 2016 study included newly discovered populations and added to our genetic study. We incorporated these new populations into species distribution niche model (SDM) and projected these onto maps of the region. We developed population matrix models based on observed demographic data to model population change and predict the species vulnerability to extinction by undertaking population viability analysis (PVA). We investigated the potential conservation value of reintroduced planted populations within the species potential suitable habitat. We found that the population studied in 2008 had grown in size due to seedling regeneration but had declined in the number of reproductively mature plants, and we were able to estimate that the species reproduces and dies after approximately 70 years. Our models suggest that if the habitat where it resides continues to be protected the species is unlikely to go extinct due to inherent population decline and that it will likely experience significant population growth after approximately 80 years due to the reproductive and life cycle attributes of the species. The newly discovered populations contain more genetic diversity than the first discovered southern population which is genetically depauperate. The species appears to demonstrate a pattern of dispersal leading to isolated founder plants which may eventually lead to population development depending on local establishment opportunities. The conservation efforts currently put in place including the reintroduction of plants within the species potential suitable habitat if maintained are thought likely to enable the species to sustain itself but it remains vulnerable to anthropogenic impacts. 相似文献
32.
Wenjuan Dong Heather Mead Lei Tian Jun-Gyu Park Juan I. Garcia Sierra Jaramillo Tasha Barr Daniel S. Kollath Vanessa K. Coyne Nathan E. Stone Ashley Jones Jianying Zhang Aimin Li Li-Shu Wang Martha Milanes-Yearsley Jordi B. Torrelles Luis Martinez-Sobrido Paul S. Keim Bridget Marie Barker Michael A. Caligiuri Jianhua Yu 《Journal of virology》2022,96(1)
33.
Summary A morphologically distinct variety of Athyrium distentifolium called A. distentifolium var. flexile has been found only in Scotland. Research was undertaken for aUK Biodiversity Action Plan. To confirm that this taxon has a definitely recognisable morphology, a morphometric analysis was used on the range of characters used to define this variety. It showed that it can be clearly differentiated. 相似文献
34.
Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages'' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment''s origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments. 相似文献
35.
Phosphorylation and nuclear accumulation are distinct events contributing to the activation of p53 总被引:2,自引:0,他引:2
It has been recently shown that ionizing radiation (IR) and the mRNA synthesis inhibitor 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) act in synergy to induce p53-mediated transactivation of reporter plasmids in human cells [Oncogene 19 (2000) 3829]. We have extended these studies and show that ionizing radiation and DRB also act in synergy to induce ATM-mediated phosphorylation of the ser15 site of p53 and enhance the expression of endogenous p21 protein. Examination of the localization of p53 revealed that while DRB did not induce phosphorylation of the ser15 site of p53 but efficiently accumulated p53 in the nucleus, ionizing radiation induced phosphorylation of the ser15 site of p53 without prolonged nuclear accumulation. Importantly, the combination of DRB and IR resulted in a strong accumulation of phosphorylated p53 in the nucleus that was more persistent then p53 accumulation after IR alone. Furthermore, the nuclear export inhibitor leptomycin B showed a similar synergy with IR as did DRB regarding ser15 phosphorylation of p53 and p21 induction. These results suggest that the synergistic activation of the p53 response by the combination treatment is due to the activation of two distinct pathways where DRB causes the prolonged nuclear accumulation of p53 while ionizing radiation activates p53 by ATM-mediated phosphorylation. 相似文献
36.
The low molecular weight (LMW) heat shock protein (HSP), HSP16.6, in the unicellular cyanobacterium, Synechocystis sp. PCC 6803, protects cells from elevated temperatures. A 95% reduction in the survival of mutant cells with an inactivated
hsp16.6 was observed after exposure for 1 h at 47°C. Wild-type cell survival was reduced to only 41%. HSP16.6 is also involved in
the development of thermotolerance. After a sublethal heat shock at 43°C for 1 h and subsequent challenge exposure at 49°C
for 40 min, mutant cells did not survive, while 64% of wild-type cells survived. Ultrastructural changes in the integrity
of thylakoid membranes of heat-shocked mutant cells also are discussed. These results demonstrate an important protective
role for HSP16.6 in the protection of cells and, in particular, thylakoid membrane against thermal stress.
Received: 14 October 1999 / Accepted: 16 November 1999 相似文献
37.
Helen M Hull-Sanders Robert H Johnson Heather A Owen Gretchen A Meyer 《Plant signaling & behavior》2009,4(9):893-895
Herbivores are sensitive to the genetic structure of plant populations, as genetics underlies plant phenotype and host quality. Polyploidy is a widespread feature of angiosperm genomes, yet few studies have examined how polyploidy influences herbivores. Introduction to new ranges, with consequent changes in selective regimes, can lead to evolution of changes in plant defensive characteristics and also affect herbivores. Here, we examine how insect herbivores respond to polyploidy in Solidago gigantea, using plants derived from both the native range (USA) and introduced range (Europe). S. gigantea has three cytotypes in the US, with two of these present in Europe. We performed bioassays with generalist (Spodoptera exigua) and specialist (Trirhabda virgata) leaf-feeding insects. Insects were reared on detached leaves (Spodoptera) or potted host plants (Trirhabda) and mortality and mass were measured. Trirhabda larvae showed little variation in survival or pupal mass attributable to either cytotype or plant origin. Spodoptera larvae were more sensitive to both cytotype and plant origin: they grew best on European tetraploids and poorly on US diploids (high mortality) and US tetraploids (low larval mass). These results show that both cytotype and plant origin influence insect herbivores, but that generalist and specialist insects may respond differently.Key words: polyploidy, cytotype, Solidago gigantea, insect herbivore, herbivory, invasive plant, introduced plantPolyploidy, or the possession of more than two sets of homologous chromosomes, is a fundamental force in angiosperm evolution.1,2 Many plant species or species complexes consist of multiple cytotypes that may occur sympatrically;3 this is an important source of genetic structure in plant populations that is often overlooked.4 Possession of multiple genomes may confer advantages to polyploid plants such as increased heterozygosity, a decreased probability of inbreeding depression, or a greater gene pool available for selection; these traits contribute to the widespread success of polyploids and may make them prone to invasiveness.5,6 In a recent article,7 we examined the functional consequences of polyploidy for different cytotypes of Solidago gigantea Ait. (Asteraceae), collected from both its native range (North America) and its introduced range (Europe). In this addendum, we show how cytotype and continent of origin influence interactions of S. gigantea with insect herbivores. Interactions with herbivores are expected to vary with cytotype because of phenotypic changes associated with polyploidy, but this area has received little study (reviewed in refs. 8–11). Plant origin, from either the native range or an introduced range, should also influence herbivores. Plants may escape from their specialist natural enemies in the introduced range, thereby experiencing reduced herbivore pressure from an insect community dominated by generalists.12,13 Given sufficient time, plants from the introduced range may evolve to decrease investment in anti-herbivore defenses, particularly those effective against specialists.14 While a growing body of research has addressed whether plant defenses against herbivory are lower in the introduced range,12,15,16 few of these studies have also examined the influence of cytotype.17Three cytotypes of S. gigantea can be found in its native range in North America (diploid, tetraploid and hexaploid, 2n = 18, 36 and 54 respectively). These are morphologically indistinguishable and not generally treated as separate species.18 In Europe, where S. gigantea was introduced in the mid 18th century,19 tetraploids are the dominant cytotype but diploids also occur. S. gigantea supports a diverse array of insect herbivores in its native range, but has few natural enemies in its introduced range.20 We report here on experiments using both a generalist and a specialist leaf-chewing insect. The generalist, Spodoptera exigua (Lepidoptera: Noctuidae) is widely distributed and highly polyphagous, while the specialist Trirhabda virgata (Coleoptera: Chrysomelidae) feeds only on closely-related species within the genus Solidago. T. virgata is an outbreak insect that can be a major defoliator of S. gigantea and related species in North America.21 We grew plants originating from 10 populations in the US and 20 populations in Europe in common gardens at the University of Wisconsin-Milwaukee Field Station in Saukville, Wisconsin. There were five plant origin-cytotype combinations: three cytotypes from the US and two from Europe. Insects were reared on detached leaves from a single plant (Spodoptera) or on potted host plants (Trirhabda), for a set period of 21 d (Spodoptera) or until pupation (Trirhabda). We recorded insect survival and mass at the end of 21 d (Spodoptera) or at pupation (Trirhabda) (reviewed in ref. 22).Overall survival was much better for the specialist Trirhabda than for the generalist Spodoptera (91% vs. 72%). Spodoptera larvae are not generally found on S. gigantea in the field, and while they are able to complete development, we found that this plant was not an ideal host. Spodoptera larvae were more sensitive to differences among cytotype and plant origin than were Trirhabda larvae. Percent survival was particularly poor for Spodoptera larvae reared on diploids from the US, where slightly more than half of the caterpillars survived for 21 days (Fig. 1). Trirhabda pupal mass was remarkably consistent across the five ploidy-plant origin combinations. In contrast, Spodoptera larvae responded to both cytotype and continent of origin. Surviving Spodoptera larvae did particularly well on tetraploid plants from the introduced range (Europe), and particularly poorly on tetraploids from the US (Fig. 1). We have previously reported that Spodoptera grow better on plants from Europe;22 our current results reveal that this difference is due exclusively to better growth on tetraploid plants. However, our results also show that both diploids and tetraploids from the US were poor hosts for Spodoptera: diploids because they caused high mortality and tetraploids because they resulted in poor growth. These results indicate that plants from the introduced range have reduced defenses against herbivores, even when accounting for polyploidy.Open in a separate windowFigure 1Mass ± se of S. exigua (A) and T. virgata (B) larvae reared on host plants of different cytotypes of Solidago gigantea originating from the US (native range) or europe (introduced range). Means in A followed by different letters are significantly different at p < 0.05 (ANOVA followed by multiple Student''s t-tests with Bonferroni correction). There were no significant differences in (B). Sample sizes for (A and B) shown in Spodoptera Trirhabda No. Surviving Initial No. % Survival No. Surviving Initial No. % Survival US-Diploid 21 39 54 37 39 95 US-Tetraploid 70 93 75 82 92 89 US-Hexaploid 16 24 67 23 24 96 EU-Diploid 15 23 65 23 24 96 EU-Tetraploid 101 129 78 114 129 88