首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4742篇
  免费   440篇
  国内免费   2篇
  2023年   17篇
  2022年   53篇
  2021年   119篇
  2020年   72篇
  2019年   86篇
  2018年   80篇
  2017年   77篇
  2016年   153篇
  2015年   239篇
  2014年   251篇
  2013年   284篇
  2012年   418篇
  2011年   421篇
  2010年   257篇
  2009年   194篇
  2008年   326篇
  2007年   349篇
  2006年   265篇
  2005年   299篇
  2004年   267篇
  2003年   228篇
  2002年   234篇
  2001年   33篇
  2000年   44篇
  1999年   54篇
  1998年   59篇
  1997年   34篇
  1996年   30篇
  1995年   28篇
  1994年   16篇
  1993年   12篇
  1992年   11篇
  1991年   13篇
  1990年   11篇
  1989年   10篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1983年   11篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   8篇
  1977年   8篇
  1976年   4篇
  1974年   9篇
  1973年   4篇
  1965年   4篇
排序方式: 共有5184条查询结果,搜索用时 15 毫秒
981.
Climate change, fisheries' pressure on penguin prey, and direct human disturbance of wildlife have all been implicated in causing large shifts in the abundance and distribution of penguins in the Southern Ocean. Without mark‐recapture studies, understanding how colonies form and, by extension, how ranges shift is challenging. Genetic studies, particularly focused on newly established colonies, provide a snapshot of colonization and can reveal the extent to which shifts in abundance and occupancy result from changes in demographic rates (e.g., reproduction and survival) or migration among suitable patches of habitat. Here, we describe the population structure of a colonial seabird breeding across a large latitudinal range in the Southern Ocean. Using multilocus microsatellite genotype data from 510 Gentoo penguin (Pygoscelis papua) individuals from 14 colonies along the Scotia Arc and Antarctic Peninsula, together with mitochondrial DNA data, we find strong genetic differentiation between colonies north and south of the Polar Front, that coincides geographically with the taxonomic boundary separating the subspecies P. p. papua and P. p. ellsworthii. Using a discrete Bayesian phylogeographic approach, we show that southern Gentoos expanded from a possible glacial refuge in the center of their current range, colonizing regions to the north and south through rare, long‐distance dispersal. Our findings show that this dispersal is important for new colony foundation and range expansion in a seabird species that ordinarily exhibits high levels of natal philopatry, though persistent oceanographic features serve as barriers to movement.  相似文献   
982.
Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long‐term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal‐scale monitoring records from north temperate‐subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce , (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce . Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio‐temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate‐subarctic regions.  相似文献   
983.
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids from triglyceride-rich lipoproteins into HDL. PLTP has been shown to be an important factor in lipoprotein metabolism and atherogenesis. Here, we report that chronic high-fat, high-cholesterol diet feeding markedly increased plasma cholesterol levels in C57BL/6 mice. PLTP deficiency attenuated diet-induced hypercholesterolemia by dramatically reducing apolipoprotein E-rich lipoproteins (-88%) and, to a lesser extent, LDL (-40%) and HDL (-35%). Increased biliary cholesterol secretion, indicated by increased hepatic ABCG5/ABCG8 gene expression, and decreased intestinal cholesterol absorption may contribute to the lower plasma cholesterol in PLTP-deficient mice. The expression of proinflammatory genes (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) is reduced in aorta of PLTP knockout mice compared with wild-type mice fed either a chow or a high-cholesterol diet. Furthermore, plasma interleukin-6 levels are significantly lower in PLTP-deficient mice, indicating reduced systemic inflammation. These data suggest that PLTP appears to play a proatherogenic role in diet-induced hyperlipidemic mice.  相似文献   
984.
Inhibition of N- (Cav2.2) and P/Q-type (Cav2.1) calcium channels by G-proteins contribute importantly to presynaptic inhibition as well as to the effects of opiates and cannabinoids. Accordingly, elucidating the molecular mechanisms underlying G-protein inhibition of voltage-gated calcium channels has been a major research focus. So far, inhibition is thought to result from the interaction of multiple proposed sites with the Gbetagamma complex (Gbetagamma). Far less is known about the important interaction sites on Gbetagamma itself. Here, we developed a novel electrophysiological paradigm, "compound-state willing-reluctant analysis," to describe Gbetagamma interaction with N- and P/Q-type channels, and to provide a sensitive and efficient screen for changes in modulatory behavior over a broad range of potentials. The analysis confirmed that the apparent (un)binding kinetics of Gbetagamma with N-type are twofold slower than with P/Q-type at the voltage extremes, and emphasized that the kinetic discrepancy increases up to ten-fold in the mid-voltage range. To further investigate apparent differences in modulatory behavior, we screened both channels for the effects of single point alanine mutations within four regions of Gbeta1, at residues known to interact with Galpha. These residues might thereby be expected to interact with channel effectors. Of eight mutations studied, six affected G-protein modulation of both N- and P/Q-type channels to varying degrees, and one had no appreciable effect on either channel. The remaining mutation was remarkable for selective attenuation of effects on P/Q-, but not N-type channels. Surprisingly, this mutation decreased the (un)binding rates without affecting its overall affinity. The latter mutation suggests that the binding surface on Gbetagamma for N- and P/Q-type channels are different. Also, the manner in which this last mutation affected P/Q-type channels suggests that some residues may be important for "steering" or guiding the protein into the binding pocket, whereas others are important for simply binding to the channel.  相似文献   
985.
Matrix metalloproteinases (MMPs) are a large conserved family of extracellular proteases, a number of which are expressed during neuronal development and upregulated in nervous system diseases. Primarily on the basis of studies using pharmaceutical inhibitors, MMPs have been proposed to degrade the extracellular matrix to allow growth cone advance during development and hence play largely permissive roles in axon extension. Here we show that MMPs are not required for axon extension in the Drosophila embryo, but rather are specifically required for the execution of several stereotyped motor axon pathfinding decisions. The Drosophila genome contains only two MMP homologs, Mmp1 and Mmp2. We isolated Mmp1 in a misexpression screen to identify molecules required for motoneuron development. Misexpression of either MMP inhibits the regulated separation/defasciculation of motor axons at defined choice points. Conversely, motor nerves in Mmp1 and Mmp2 single mutants and Mmp1 Mmp2 double mutant embryos are loosely bundled/fasciculated, with ectopic axonal projections. Quantification of these phenotypes reveals that the genetic requirement for Mmp1 and Mmp2 is distinct in different nerve branches, although generally Mmp2 plays the predominant role in pathfinding. Using both an endogenous MMP inhibitor and MMP dominant-negative constructs, we demonstrate that MMP catalytic activity is required for motor axon fasciculation. In support of the model that MMPs promote fasciculation, we find that the defasciculation observed when MMP activity is compromised is suppressed by otherwise elevating interaxonal adhesion -- either by overexpressing Fas2 or by reducing Sema-1a dosage. These data demonstrate that MMP activity is essential for embryonic motor axon fasciculation.  相似文献   
986.
987.
988.
Proteinase inhibitors have been proposed to function as plant defence agents against herbivorous pests. We have introduced the barley trypsin inhibitor CMe (BTI-CMe) into wheat (Triticum aestivum L.) by biolistic bombardment of cultured immature embryos. Of the 30 independent transgenic wheat lines selected, 16 expressed BTI-CMe. BTI-CMe was properly transcribed and translated as indicated by northern and western blot, with a level of expression in transgenic wheat seeds up to 1.1% of total extracted protein. No expression was detected in untransformed wheat seeds. Functional integrity of BTI-CMe was confirmed by trypsin inhibitor activity assay. The significant reduction of the survival rate of the Angoumois grain moth (Sitotroga cerealella, Lepidoptera: Gelechiidae), reared on transgenic wheat seeds expressing the trypsin inhibitor BTI-CMe, compared to the untransformed control confirmed the potential of BTI-CMe for the increase of insect resistance. However, only early-instar larvae were inhibited in transgenic seeds and expression of BTI-CMe protein in transgenic leaves did not have a significant protective effect against leaf-feeding insects.  相似文献   
989.
α-Isopropylmalate synthase (α-IPMS) catalyzes the metal-dependent aldol reaction between α-ketoisovalerate (α-KIV) and acetyl-coenzyme A (AcCoA) to give α-isopropylmalate (α-IPM). This reaction is the first committed step in the biosynthesis of leucine in bacteria. α-IPMS is homodimeric, with monomers consisting of (β/α)(8) barrel catalytic domains fused to a C-terminal regulatory domain, responsible for binding leucine and providing feedback regulation for leucine biosynthesis. In these studies, we demonstrate that removal of the regulatory domain from the α-IPMS enzymes of both Neisseria meningitidis (NmeIPMS) and Mycobacterium tuberculosis (MtuIPMS) results in enzymes that are unable to catalyze the formation of α-IPM, although truncated NmeIPMS was still able to slowly hydrolyze AcCoA. The lack of catalytic activity of these truncation variants was confirmed by complementation studies with Escherichia coli cells lacking the α-IPMS gene, where transformation with the plasmids encoding the truncated α-IPMS enzymes was not able to rescue α-IPMS activity. X-ray crystal structures of both truncation variants reveal that both proteins are dimeric and that the catalytic sites of the proteins are intact, although the divalent metal ion that is thought to be responsible for activating substrate α-KIV is displaced slightly relative to its position in the substrate-bound, wild-type structure. Isothermal titration calorimetry and WaterLOGSY nuclear magnetic resonance experiments demonstrate that although these truncation variants are not able to catalyze the reaction between α-KIV and AcCoA, they are still able to bind the substrate α-KIV. It is proposed that the regulatory domain is crucial for ensuring protein dynamics necessary for competent catalysis.  相似文献   
990.
As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1–10 μM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 μM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号