首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4783篇
  免费   446篇
  国内免费   2篇
  5231篇
  2023年   17篇
  2022年   54篇
  2021年   120篇
  2020年   73篇
  2019年   86篇
  2018年   80篇
  2017年   79篇
  2016年   155篇
  2015年   239篇
  2014年   251篇
  2013年   285篇
  2012年   420篇
  2011年   425篇
  2010年   264篇
  2009年   195篇
  2008年   326篇
  2007年   350篇
  2006年   265篇
  2005年   299篇
  2004年   271篇
  2003年   231篇
  2002年   234篇
  2001年   35篇
  2000年   45篇
  1999年   55篇
  1998年   60篇
  1997年   36篇
  1996年   30篇
  1995年   32篇
  1994年   18篇
  1993年   13篇
  1992年   12篇
  1991年   13篇
  1990年   12篇
  1989年   10篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1983年   11篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   8篇
  1977年   8篇
  1974年   9篇
  1973年   4篇
  1965年   4篇
排序方式: 共有5231条查询结果,搜索用时 15 毫秒
991.
Higher-level relationships within, and the root of Placentalia, remain contentious issues. Resolution of the placental tree is important to the choice of mammalian genome projects and model organisms, as well as for understanding the biogeography of the eutherian radiation. We present phylogenetic analyses of 63 species representing all extant eutherian mammal orders for a new molecular phylogenetic marker, a 1.3kb portion of exon 26 of the apolipoprotein B (APOB) gene. In addition, we analyzed a multigene concatenation that included APOB sequences and a previously published data set (Murphy et al., 2001b) of three mitochondrial and 19 nuclear genes, resulting in an alignment of over 17kb for 42 placentals and two marsupials. Due to computational difficulties, previous maximum likelihood analyses of large, multigene concatenations for placental mammals have used quartet puzzling, less complex models of sequence evolution, or phylogenetic constraints to approximate a full maximum likelihood bootstrap. Here, we utilize a Unix load sharing facility to perform maximum likelihood bootstrap analyses for both the APOB and concatenated data sets with a GTR+Gamma+I model of sequence evolution, tree-bisection and reconnection branch-swapping, and no phylogenetic constraints. Maximum likelihood and Bayesian analyses of both data sets provide support for the superordinal clades Boreoeutheria, Euarchontoglires, Laurasiatheria, Xenarthra, Afrotheria, and Ostentoria (pangolins+carnivores), as well as for the monophyly of the orders Eulipotyphla, Primates, and Rodentia, all of which have recently been questioned. Both data sets recovered an association of Hippopotamidae and Cetacea within Cetartiodactyla, as well as hedgehog and shrew within Eulipotyphla. APOB showed strong support for an association of tarsier and Anthropoidea within Primates. Parsimony, maximum likelihood and Bayesian analyses with both data sets placed Afrotheria at the base of the placental radiation. Statistical tests that employed APOB to examine a priori hypotheses for the root of the placental tree rejected rooting on myomorphs and hedgehog, but did not discriminate between rooting at the base of Afrotheria, at the base of Xenarthra, or between Atlantogenata (Xenarthra+Afrotheria) and Boreoeutheria. An orthologous deletion of 363bp in the aligned APOB sequences proved phylogenetically informative for the grouping of the order Carnivora with the order Pholidota into the superordinal clade Ostentoria. A smaller deletion of 237-246bp was diagnostic of the superordinal clade Afrotheria.  相似文献   
992.
Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will ‘snap’ Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to ‘lock’ gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.  相似文献   
993.
To determine whether A(3) adenosine receptor (A(3)AR) signaling modulates myocardial function, energetics, and cardioprotection, hearts from wild-type and A(3)AR-overexpressor mice were subjected to 20-min ischemia and 40-min reperfusion while (31)P NMR spectra were acquired. Basal heart rate and left ventricular developed pressure (LVDP) were lower in A(3)AR-overexpressor hearts than wild-type hearts. Ischemic ATP depletion was delayed and postischemic recoveries of contractile function, ATP, and phosphocreatine were greater in A(3)AR-hearts. To determine the role of depressed heart rate and to confirm A(3)AR-specific signaling, hearts were paced at 480 beats/min with or without 60 nmol/l MRS-1220 (A(3)AR-specific inhibitor) and then subjected to ischemia-reperfusion. LVDP was similar in paced A(3)AR-overexpressor and paced wild-type hearts. Differences in ischemic ATP depletion and postischemic contractile and energetic dysfunction remained in paced A(3)AR-overexpressor hearts versus paced wild-type hearts but were abolished by MRS-1220. In summary, A(3)AR overexpression decreased basal heart rate and contractility, preserved ischemic ATP, and decreased postischemic dysfunction. Pacing abolished the decreased contractility but not the ATP preservation or cardioprotection. Therefore, A(3)AR overexpression results in cardioprotection via a specific A(3)AR effect, possibly involving preservation of ATP during ischemia.  相似文献   
994.
Summary A Monte Carlo simulation is proposed to study the dynamics of helper T-cells (N H) and viral (N V) populations in an immune response model relevant to HIV. Cellular states are binary variables and the interactions are described by logical expressions. Viral population shows a nonmonotonic growth before reaching a constant value while helper T-cells grow to a constant after a relaxation/reaction time. Initially, the population of helper cells grows with time with a power-law, N Ht β, before reaching the steady-state; the growth exponent β increases systematically (β ≈ 1 – 2) with the mutation rate (P mut≈0.1–0.4). The critical recovery time (t c) increases exponentially with the viral mutation, t cAe αP mut , with α=4.52±0.29 in low mutation regime and α=15.21±1.41 in high mutation regime. The equilibrium population of helper T-cell declines slowly with P mut and collapses at ∼ 0.40; the viral population exhibits a reverse trend, i.e., a slow increase before the burst around the same mutation regime.  相似文献   
995.
Aging promotes numerous intracellular changes in T cells that impact their effector function. Our data show that aging promotes an increase in the localization of STAT3 to the mitochondria (mitoSTAT3), which promotes changes in mitochondrial dynamics and function and T-cell cytokine production. Mechanistically, mitoSTAT3 increased the activity of aging T-cell mitochondria by increasing complex II. Limiting mitoSTAT3 using a mitochondria-targeted STAT3 inhibitor, Mtcur-1 lowered complex II activity, prevented age-induced changes in mitochondrial dynamics and function, and reduced Th17 inflammation. Exogenous expression of a constitutively phosphorylated form of STAT3 in T cells from young adults mimicked changes in mitochondrial dynamics and function in T cells from older adults and partially recapitulated aging-related cytokine profiles. Our data show the mechanistic link among mitoSTAT3, mitochondrial dynamics, function, and T-cell cytokine production.  相似文献   
996.
Cyclin-dependent kinases (CDKs) are conserved regulators of the eukaryotic cell cycle with different isoforms controlling specific phases of the cell cycle. Mitogenic or growth inhibitory signals are mediated, respectively, by activation or inhibition of CDKs which phosphorylate proteins associated with the cell cycle. The central role of CDKs in cell cycle regulation makes them a potential new target for inhibitory molecules with anti-proliferative and/or anti-neoplastic effects. We describe the crystal structures of the complexes of CDK2 with a weakly specific CDK inhibitor, N6-(δ2-isopentenyl)adenine, and a strongly specific inhibitor, olomoucine. Both inhibitors are adenine derivatives and bind in the adenine binding pocket of CDK2, but in an unexpected and different orientation from the adenine of the authentic ligand ATP. The N6-benzyl substituent in olomoucine binds outside the conserved binding pocket and is most likely responsible for its specificity. The structural information from the CDK2-olomoucine complex will be useful in directing the search for the next generation inhibitors with improved properties. © 1995 Wiley-Liss, Inc.  相似文献   
997.
Neural tube defects (NTDs) are common birth defects, occurring in approximately 1/1,000 births; both genetic and environmental factors are implicated. To date, no major genetic risk factors have been identified. Throughout development, cell adhesion molecules are strongly implicated in cell–cell interactions, and may play a role in the formation and closure of the neural tube. To evaluate the role of neural cell adhesion molecule 1 (NCAM1) in risk of human NTDs, we screened for novel single-nucleotide polymorphisms (SNPs) within the gene. Eleven SNPs across NCAM1 were genotyped using TaqMan. We utilized a family-based approach to evaluate evidence for association and/or linkage disequilibrium. We evaluated American Caucasian simplex lumbosacral myelomeningocele families (n=132 families) using the family based association test (FBAT) and the pedigree disequilibrium test (PDT). Association analysis revealed a significant association between risk for NTDs and intronic SNP rs2298526 using both the FBAT test (P=0.0018) and the PDT (P=0.0025). Using the HBAT version of the FBAT to look for haplotype association, all pairwise comparisons with SNP rs2298526 were also significant. A replication study set, consisting of 72 additional families showed no significant association; however, the overall trend for overtransmission of the less common allele of SNP rs2298526 remained significant in the combined sample set. In addition, we analyzed the expression pattern of the NCAM1 protein in human embryos, and while NCAM1 is not expressed within the neural tube at the time of closure, it is expressed in the surrounding and later in differentiated neurons of the CNS. These results suggest variations in NCAM1 may influence risk for human NTDs.Other members of NTD Collaborative Group involved in this study are listed in the appendix  相似文献   
998.
BioMetals - Manganese (Mn), an essential metal, can be toxic at elevated levels. In 2012, the first inherited cause of Mn excess was reported in patients with mutations in SLC30A10, a Mn efflux...  相似文献   
999.
1000.
For most metazoans, oxygen deprivation leads to cell dysfunction and if severe, death. Sublethal stress prior to a hypoxic or anoxic insult (“preconditioning”) can protect cells from subsequent oxygen deprivation. The molecular mechanisms by which sublethal stress can buffer against a subsequent toxic insult and the role of the nervous system in the response are not well understood. We studied the role of neuronal activity preconditioning to oxygen deprivation in Caenorhabditis elegans. Animals expressing the histamine gated chloride channels (HisCl1) in select cell populations were used to temporally and spatially inactivate the nervous system or tissue prior to an anoxic insult. We find that inactivation of the nervous system for 3 h prior to the insult confers resistance to a 48-h anoxic insult in 4th-stage larval animals. Experiments show that this resistance can be attributed to loss of activity in cholinergic and GABAergic neurons as well as in body wall muscles. These observations indicate that the nervous system activity can mediate the organism's response to anoxia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号