首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8593篇
  免费   934篇
  国内免费   2篇
  2022年   64篇
  2021年   167篇
  2020年   95篇
  2019年   130篇
  2018年   128篇
  2017年   110篇
  2016年   221篇
  2015年   322篇
  2014年   361篇
  2013年   456篇
  2012年   604篇
  2011年   612篇
  2010年   370篇
  2009年   288篇
  2008年   477篇
  2007年   496篇
  2006年   400篇
  2005年   435篇
  2004年   415篇
  2003年   370篇
  2002年   354篇
  2001年   145篇
  2000年   171篇
  1999年   170篇
  1998年   114篇
  1997年   86篇
  1996年   90篇
  1995年   77篇
  1994年   65篇
  1993年   53篇
  1992年   99篇
  1991年   117篇
  1990年   94篇
  1989年   94篇
  1988年   93篇
  1987年   89篇
  1986年   77篇
  1985年   80篇
  1984年   67篇
  1983年   64篇
  1982年   40篇
  1981年   37篇
  1979年   49篇
  1978年   40篇
  1977年   37篇
  1975年   38篇
  1974年   63篇
  1973年   49篇
  1972年   41篇
  1968年   38篇
排序方式: 共有9529条查询结果,搜索用时 7 毫秒
71.
Glucose-6-phosphate isomerase exists as multiple, catalytically active isozymes which can be resolved by polyacrylamide gel electrophoresis, isoelectric focusing, and ion-exchange chromatography. GPI from bovine heart was purified to homogeneity and each of the isozymes resolved. Four of the five isozymes were characterized with regard to their physical, chemical, and catalytic properties in order to establish their possible physiological significance and to ascertain their molecular basis. The isozymes exhibited identical native (118,000) and subunit (59,000) molecular weights but had different apparent pI values of 7.2, 7.0, 6.8, and 6.6. Kinetic constants, such as turnover number, Km and Ki values, were identical for all isozymes in either reaction direction. Structural analyses showed that the amino termini were blocked and the carboxyl terminal sequences were -Glu-Ala-Ser-Gly for all four isozymes. The most basic isozyme was more stable than the more acidic isozymes at pH extremes, at high ionic strength, in the presence of denaturants, or upon exposure to proteases. When the most basic isozyme was incubated in vitro under mild alkaline conditions, there was a spontaneous generation of the more acidic isozymes with electrophoretic properties identical to those found in vivo. The simultaneous release of ammonia along with the spontaneous shift to more acidic isozymes indicates deamidation as the molecular basis for the formation of the acidic isozymes both in vivo and in vitro. The change in the peptide fragmentation patterns following cleavage by hydroxylamine further suggests that deamidation of specific Asn-Gly bonds accounts for the structural basis of the isozymes.  相似文献   
72.
C T Kong  P F Cook 《Biochemistry》1988,27(13):4795-4799
Isotope partitioning beginning with the binary E.MgATP and E.N-acetyl-Leu-Arg-Arg-Ala-Ser-Leu-Gly (Ser-peptide) complexes indicates that the kinetic mechanism for the adenosine 3',5'-monophosphate dependent protein kinase is steady-state random. A total of 100% of the initial radioactive E.MgATP complex is trapped as phospho-Ser-peptide at infinite Ser-peptide concentration at both low and high concentration of uncomplexed Mg2+, suggesting that the off-rate of MgATP from the E.MgATP.Ser-peptide complex is slow relative to the catalytic steps. Km for Ser-peptide in the trapping reaction decreases from 17 microM at low Mg2+ to 2 microM at high Mg2+, indicating that Mg2+ decreases the off-rate for MgATP from the E.MgATP complex. A total of 100% of the radioactive E.Ser-peptide complex is trapped as phospho-Ser-peptide at low Mg2+, but only 40% is trapped at high Mg2+ in the presence of an infinite concentration of MgATP, suggesting that the off-rate for Ser-peptide from the central complex is much less than catalysis at low but not at high Mg2+. In support of this finding, the Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly (Ala-peptide) increases from 0.27 mM at low Mg2+ to 2.4 mM at high Mg2+. No trapping was observed at either high or low Mg2+ for the E.MgADP complex up to a phospho-Ser-peptide concentration of 5 mM. Thus, it is likely that in the slow-reaction direction the kinetic mechanism is rapid equilibrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
73.
P M Weiss  C Y Chen  W W Cleland  P F Cook 《Biochemistry》1988,27(13):4814-4822
We have used deuterium and 15N isotope effects to study the relative rates of the steps in the mechanisms of alanine and glutamate dehydrogenases. The proposed chemical mechanisms for these enzymes involve carbinolamine formation, imine formation, and reduction of the imine to the amino acid [Grimshaw, C.E., Cook, P.F., & Cleland, W.W. (1981) Biochemistry 20, 5655; Rife, J.E., & Cleland, W.W. (1980) Biochemistry 19, 2328]. These steps are almost equally rate limiting for V/Kammonia with alanine dehydrogenase, while with glutamate dehydrogenase carbinolamine formation, imine formation, and release of glutamate after hydride transfer provide most of the rate limitation of V/Kammonia. Release of oxidized nucleotide is largely rate limiting for Vmax for both enzymes. When beta-hydroxypyruvate replaces pyruvate, or 3-acetylpyridine NADH (Acpyr-NADH) or thio-NADH replaces NADH with alanine dehydrogenase, nucleotide release no longer limits Vmax, and hydride transfer becomes more rate limiting. With glutamate dehydrogenase, replacement of alpha-ketoglutarate by alpha-ketovalerate makes hydride transfer more rate limiting. Use of Acpyr-NADPH has a minimal effect with alpha-ketoglutarate but causes an 8-fold decrease in Vmax with alpha-ketovalerate, with hydride transfer the major rate-limiting step. In contrast, thio-NADPH with either alpha-keto acid causes carbinolamide formation to become almost completely rate limiting. These studies show the power of multiple isotope effects in deducing details of the chemistry and changes in rate-limiting step(s) in complicated reaction mechanisms such as those of alanine and glutamate dehydrogenases.  相似文献   
74.
cDNA cloning has identified the presence in the human genome of three genes encoding alpha subunits of pertussis toxin substrates, generically called "Gi." They are named alpha i-1, alpha i-2 and alpha i-3. However, none of these genes has been functionally identified with any of the alpha subunits of several possible G proteins, including pertussis toxin-sensitive Gp's, stimulatory to phospholipase C or A2, Gi, inhibitory to adenylyl cyclase, or Gk, stimulatory to a type of K+ channels. We now report the nucleotide sequence and the complete predicted amino acid sequence of human liver alpha i-3 and the partial amino acid sequence of proteolytic fragments of the alpha subunit of human erythrocyte Gk. The amino acid sequence of the proteolytic fragment is uniquely encoded by the cDNA of alpha i-3, thus identifying it as alpha k. The probable identity of alpha i-1 with alpha p and possible roles for alpha i-2, as well as additional roles for alpha i-1 and alpha i-3 (alpha k) are discussed.  相似文献   
75.
The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. From the above data, the following conclusions can be made concerning the mechanism for this enzyme. Substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction.  相似文献   
76.
Pyrophosphate-dependent phosphofructokinase (PPi-PFK) was purified from the mung bean Phaseolus aureus. The enzyme is activated by fructose 2,6-bisphosphate at nanomolar concentrations. The enzyme exhibits Michaelis-Menten kinetics, and the reaction mechanism, deduced from initial velocity studies in the absence of inhibitors as well as product and dead-end inhibition studies, is rapid equilibrium random in the presence and absence of fructose 2,6-bisphosphate. In the direction of fructose 6-phosphate phosphorylation, saturating fructose 2,6-bisphosphate (1 microM) increases V congruent to 9-fold and increases V/KMgPPi and V/KF6P about 30-fold. In the reverse direction (phosphate phosphorylation), the same concentration of activator has little if any effect on V or the Km for inorganic phosphate (Pi) and Mg2+ but does increase V/KFBP about 42-fold. No changes were observed in any of the other rate constants. The binding affinity of fructose 2,6-bisphosphate to all enzyme forms is identical. The activator site of the mung bean PPi-PFK binds fructose 2,6-bisphosphate with a Kact of 30 nM with the 2,5-anhydro-D-glucitol 1,6-bisphosphate (the most effective analogue) 33-fold less tightly. Of the alkanediol bisphosphate series, 1,4-butanediol bisphosphate exhibited the tightest binding (Kact congruent to 3 microM). These and a series of other activating analogues are discussed in relation to the activator site.  相似文献   
77.
Pyrophosphate-dependent phosphofructokinase from the facultative anaerobic bacterium Propionibacterium freudenreichii and from the mung bean Phaseolus aureus has been purified to homogeneity. Potential utilization of carbohydrate substrate analogues for each enzyme was initially screened by using Fourier transform 31P NMR at pH 8 and 25 degrees C and monitoring the appearance of the phosphate resonance in the direction of D-fructose 6-phosphate phosphorylation (forward reaction direction) and, with the bisphosphate analogues, the appearance of the pyrophosphate resonance in the direction of phosphate phosphorylation (reverse reaction direction). Both enzymes are strict in their requirements for the sugar phosphate substrate, with only D-fructose 6-phosphate, D-sedoheptulose 7-phosphate, and 2,5-anhydro-D-mannitol 6-phosphate, or their respective bisphosphates in the reverse reaction direction, utilized as substrates at detectable levels. The dissociation constants for D-psicose 6-phosphate, D-tagatose 6-phosphate, and L-sorbose 6-phosphate are an order of magnitude larger than that for D-fructose 6-phosphate, indicating a stringent steric requirement for the D-threo (trans) configuration at the two nonanomeric furan ring hydroxyl groups. These results strongly suggest that the anomeric, epimeric, and tautomeric form of the sugar phosphate substrates favored by both enzymes is the beta-D-fructofuranose form. Dissociation constants for nonsubstrate analogues were used to provide information on the nature of the active site. Competitive inhibition patterns vs. fructose 1,6-bisphosphate were obtained for a series of 1,n-alkanediol bisphosphates (where n = 2-9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
78.
Different populations of DNA polymerase alpha in HeLa cells   总被引:3,自引:0,他引:3  
Three different populations of HeLa DNA polymerase alpha have been distinguished using a novel preparation of chromatin isolated using an isotonic salt concentration, which contains intact DNA. One synthesizes DNA in vitro at 85% of the rate in vivo, is found only in S-phase nuclei tightly associated with the nucleoskeleton and requires unbroken DNA in the form of chromatin as a template: we assume this is the authentic S-phase activity. On incubation at 37 degrees C, this activity dissociates from the nucleoskeleton to give a soluble activity that prefers broken templates. This soluble activity is in turn heterogeneous, containing active complexes of about 0 X 75 X 10(6) and 3 X 10(6) Mr. The third activity is also soluble and released by lysing cells at any stage of the cell cycle. It, too, prefers broken templates. The authentic activity is obscured by the soluble ones if broken templates are provided.  相似文献   
79.
80.
Surface sialoglycoproteins of HeLa cells were labeled by NaB[3H]4 reduction after oxidation with NaIO4, yielding seven major radioactive bands as visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When labeled cells are reincubated in growth medium, all of these major classes of glycoproteins are internalized and all but one (105 kDa) are recycled, i.e. subsequently reappear on the surface. The surface-labeling patterns over time remain qualitatively similar, but changes in relative specific activity of the bands suggest some preferential degradation of individual glycoproteins. Analytical fractionation at various time points after labeling suggests that the surface molecules pass through the lysosomal compartment and subsequently accumulate in the Golgi and Golgi-related compartments before returning to the surface. Inhibition of lysosomal function with chloroquine or NH4Cl prevents the accumulation and subsequent recycling. The pathway is confirmed with preparative fractionation into surface membrane, prelysosomal, lysosomal, Golgi, and Golgi-related compartments. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrates a degree of preferential handling of the glycoproteins on this pathway, e.g. the 180-kDa band is relatively reduced at the endocytic/prelysosomal stage and the 105-kDa band appears to be degraded in its first passage through the lysosomes. The other bands recycle 10-20 times before being degraded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号