首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4719篇
  免费   439篇
  国内免费   2篇
  2023年   15篇
  2022年   35篇
  2021年   119篇
  2020年   72篇
  2019年   86篇
  2018年   80篇
  2017年   77篇
  2016年   153篇
  2015年   239篇
  2014年   251篇
  2013年   284篇
  2012年   417篇
  2011年   421篇
  2010年   257篇
  2009年   194篇
  2008年   326篇
  2007年   348篇
  2006年   265篇
  2005年   299篇
  2004年   266篇
  2003年   228篇
  2002年   234篇
  2001年   33篇
  2000年   44篇
  1999年   53篇
  1998年   59篇
  1997年   34篇
  1996年   30篇
  1995年   28篇
  1994年   16篇
  1993年   12篇
  1992年   11篇
  1991年   13篇
  1990年   11篇
  1989年   10篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1983年   11篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   8篇
  1977年   8篇
  1976年   4篇
  1974年   9篇
  1973年   4篇
  1965年   4篇
排序方式: 共有5160条查询结果,搜索用时 31 毫秒
101.
This study addresses how the human temporal bone develops the population-specific pattern of morphology observed among adults and at what point in ontogeny those patterns arise. Three-dimensional temporal bone shape was captured using 15 landmarks on ontogenetic series of specimens from seven modern human populations. Discriminant function analysis revealed that population-specific temporal bone morphology is evident early in ontogeny, with significant shape differences among many human populations apparent prior to the eruption of the first molar. As early as five years of age, temporal bone shape reflects population history and can be used to reliably sort populations, although those in closer geographic proximity and molecular affinity are more likely to be misclassified. The deviation of cold-adapted populations from this general pattern of congruence between temporal bone morphology and genetic distances, identified in previous work, was confirmed here in adult and subadult specimens, and was revealed to occur earlier in ontogeny than previously recognized. Significant differences exist between the ontogenetic trajectories of some pairs of populations, but not among others, and the angles of these trajectories do not reflect genetic relationships or final adult temporal bone size. Significant intrapopulation differences are evident early in ontogeny, with differences becoming amplified by divergent trajectories in some groups. These findings elucidate how the congruence between adult human temporal bone morphology and population history develops, and reveal that this pattern corresponds closely to that described previously for facial ontogeny.  相似文献   
102.
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.  相似文献   
103.
Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (∼80 Å) to HNF4α, binding with high affinity Kd ∼250–300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction altered protein secondary structure. Finally, L-FABP potentiated transactivation of HNF4α in COS7 cells. Taken together, these data suggest that L-FABP provides a signaling path to HNF4α activation in the nucleus.  相似文献   
104.
The morphology of the teliospores of Puccinia smyrnii has been variously described as warted, or reticulate, or a combination of both patterns. Spores were examined by LM and SEM, and shown to be irregularly warted. The sequence of development of the spores was examined by TEM. Four phases of wall differentiation were recognised. The ornamentation results from a differential deposition of secondary wall components, which are concentrated into invaginations of the cytoplasm. The subsequent exsertion of these invaginations, and concomitant disappearance of the primary wall, reveal the irregular warts of the mature spore. This mode of ornament formation is compared with other rust spore forms, and contrasted with that already outlined for Puccinia chaerophylli, a truly reticulatespored Umbelliferous rust. Combined SEM and TEM observations suggest an explanation for the erroneous LM interpretations.  相似文献   
105.
The optimization of a potent and highly selective series of dual mTORC1 and mTORC2 inhibitors is described. An initial focus on improving cellular potency whilst maintaining or improving other key parameters, such as aqueous solubility and margins over hERG IC50, led to the discovery of the clinical candidate AZD8055 (14). Further optimization, particularly aimed at reducing the rate of metabolism in human hepatocyte incubations, resulted in the discovery of the clinical candidate AZD2014 (21).  相似文献   
106.
A novel series of indole/indazole-aminopyrimidines was designed and synthesized with an aim to achieve optimal potency and selectivity for the c-Jun kinase family or JNKs. Structure guided design was used to optimize the series resulting in a significant potency improvement. The best compound (17) has IC50 of 3 nM for JNK1 and 20 nM for JNK2, with greater than 40-fold selectivity against other kinases with good physicochemical and pharmacokinetic properties.  相似文献   
107.
A proteomics survey of human placental syncytiotrophoblast (ST) apical plasma membranes revealed peptides corresponding to flotillin-1 (FLOT1) and flotillin-2 (FLOT2). The flotillins belong to a class of lipid microdomain-associated integral membrane proteins that have been implicated in clathrin- and caveolar-independent endocytosis. In the present study, we characterized the expression of the flotillin proteins within the human placenta. FLOT1 and FLOT2 were coexpressed in placental lysates and BeWo human trophoblast cells. Immunofluorescence microscopy of first-trimester and term placentas revealed that both proteins were more prominent in villous endothelial cells and cytotrophoblasts (CTs) than the ST. Correspondingly, forskolin-induced fusion in BeWo cells resulted in a decrease in FLOT1 and FLOT2, suggesting that flotillin protein expression is reduced following trophoblast syncytialization. The flotillin proteins co-localized with a marker of fluid-phase pinocytosis, and knockdown of FLOT1 and/or FLOT2 expression resulted in decreased endocytosis of cholera toxin B subunit. We conclude that FLOT1 and FLOT2 are abundantly coexpressed in term villous placental CTs and endothelial cells, and in comparison, expression of these proteins in the ST is reduced. These findings suggest that flotillin-dependent endocytosis is unlikely to be a major pathway in the ST, but may be important in the CT and endothelium.  相似文献   
108.
Although mate choice by males does occur in nature, our understanding of its importance in driving evolutionary change remains limited compared with that for female mate choice. Recent theoretical models have shown that the evolution of male mate choice is more likely when individual variation in male mating effort and mating preferences exist and positively covary within populations. However, relatively little is known about the nature of such variation and its maintenance within natural populations. Here, using the Trinidadian guppy (Poecilia reticulata) as a model study system, we report that mating effort and mating preferences in males, based on female body length (a strong correlate of fecundity), positively covary and are significantly variable among subjects. Individual males are thus consistent, but not unanimous, in their mate choice. Both individual mating effort (including courtship effort) and mating preference were significantly repeatable. These novel findings support the assumptions and predictions of recent evolutionary models of male mate choice, and are consistent with the presence of additive genetic variation for male mate choice based on female size in our study population and thus with the opportunity for selection and further evolution of large female body size through male mate choice.  相似文献   
109.
Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (Anet), respiration in the dark and light (RD and RL, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species – Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb – grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of Anet and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: −19.7%; fertilization: −79.7%; warming with fertilization: −91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and in turn alter the terrestrial carbon cycle in future tundra environments.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号