首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   591篇
  免费   63篇
  国内免费   1篇
  2022年   5篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   10篇
  2017年   11篇
  2016年   14篇
  2015年   25篇
  2014年   29篇
  2013年   24篇
  2012年   37篇
  2011年   31篇
  2010年   15篇
  2009年   26篇
  2008年   30篇
  2007年   31篇
  2006年   26篇
  2005年   25篇
  2004年   13篇
  2003年   18篇
  2002年   14篇
  2001年   15篇
  2000年   21篇
  1999年   14篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   9篇
  1991年   9篇
  1990年   12篇
  1989年   8篇
  1988年   11篇
  1987年   11篇
  1986年   8篇
  1984年   5篇
  1983年   4篇
  1982年   10篇
  1980年   5篇
  1979年   10篇
  1977年   4篇
  1976年   6篇
  1974年   4篇
  1973年   4篇
  1972年   5篇
  1970年   10篇
  1967年   3篇
  1966年   3篇
排序方式: 共有655条查询结果,搜索用时 15 毫秒
131.
Through a sensitized screen for novel components of pathways regulating organ separation in Arabidopsis flowers, we have found that the leucine‐rich repeat receptor‐like kinase SOMATIC EMBRYOGENESIS RECEPTOR‐LIKE KINASE1 (SERK1) acts as a negative regulator of abscission. Mutations in SERK1 dominantly rescue abscission in flowers without functional NEVERSHED (NEV), an ADP‐ribosylation factor GTPase‐activating protein required for floral organ shedding. We previously reported that the organization of the Golgi apparatus and location of the trans‐Golgi network (TGN) are altered in nev mutant flowers. Disruption of SERK1 restores Golgi structure and the close association of the TGN in nev flowers, suggesting that defects in these organelles may be responsible for the block in abscission. We have also found that the abscission zones of nev serk1 flowers are enlarged compared to wild‐type. A similar phenotype was previously observed in plants constitutively expressing a putative ligand required for organ separation, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), suggesting that signalling through IDA and its proposed receptors, HAESA and HAESA‐LIKE2, may be deregulated in nev serk1 abscission zone cells. Our studies indicate that in addition to its previously characterized roles in stamen development and brassinosteroid perception, SERK1 plays a unique role in modulating the loss of cell adhesion that occurs during organ abscission.  相似文献   
132.
133.
134.
This report is an investigation of the specific sequence changes in the DNA of Salmonella hisD3052 revertants induced by a set of specific frameshift mutagens found in our diet. They include B[a]P, aflatoxin B1, and the cooked-food mutagens, IQ, MeIQ, and PhIP. The Salmonella DNA was cleaved with restriction enzymes Sau3A, EcoR1, and Alu1 to give a 620-bp fragment containing the hisD3052 site. The size-fractionated fragments were ligated to the bacteriophage vector M13mp8. After transformation into E. coli, the recombinants were screened with a nick-translated hisD+ gene probe, and the isolated single-stranded DNA was sequenced. All IQ (13), MeIQ (3), PhIP (5), and aflatoxin B1 (3) induced revertants isolated had a 2-base (-CG- dinucleotide) deletion situated 10 bases upstream from the original hisD3052 -C- deletion. In contrast, 9 of 24 revertants induced by B[a]P had extensive deletions varying from 8 to 26 nucleotides in length and located at various sites along a 45-base-pair sequence beginning at nucleotide 2085 of the his operon. The other 15 B[a]P-induced revertants had a -CG- deletion at the same location as the revertants induced by the other food mutagens. 7 spontaneous revertants were also analyzed; they showed 3 -CG- deletions, 1 insertion and 3 distinct deletions (varying from 2 to 11 bases in size). In total, 13 distinct base changes are described which lead to reversion of the hisD3052 mutation.  相似文献   
135.
Recent evidence indicates that basic fibroblast growth factor (bFGF), which lacks a conventional signal recognition sequence, is a component of the subendothelial matrix. However, the molecular mechanisms regulating its cellular release and subsequent matrix deposition remain equivocal. To examine the cellular and subcellular mechanisms regulating bFGF release and subendothelial sequestration, we generated polyclonal antibodies against a chemically cross-linked bFGF. We then used anti-bFGF IgG in conjunction with 3T3 cell [3H]thymidine incorporation assays, enzyme immunoassays and immunofluorescence to learn whether bFGF accumulation in the subendothelial matrix is dependent upon endothelial cell (EC)-cell contact, which coincides with growth arrest. In contrast to subconfluent cultures, which lacked any detectable extracellular matrix bFGF localization, bovine aortic and microvascular EC plated at confluent densities displayed a punctate extracellular staining pattern that was abolished when EC were pretreated with 10 micrograms/ml cycloheximide. Additionally, when EC were treated with either 1 mM beta-D xyloside, an inhibitor of proteoglycan assembly, or 100 micrograms/ml heparin, there was a 40% reduction in matrix-associated bFGF (quantified by image analysis of antibody stained cultures). 3T3 [3H]thymidine incorporation assays indicated that the beta-D xyloside-induced reduction of matrix-associated bFGF coincided with a significant increase in bFGF activity in the conditioned media. Neither sparsely-plated nor confluent EC cultures possessed specific bFGF localization of the nuclear compartment when cells were fixed using cold methanol; however, when EC were fixed in formaldehyde and lysed in isotonic buffers containing 0.1% Triton X-100 or absolute acetone, there was a marked decrease in anti-bFGF staining of the postconfluent extracellular matrix and a concomitant increase in nuclear fluorescence. Because bFGF-stimulated vascular cell growth has been implicated in controlling neointimal cell proliferation, we screened normal and atherosclerotic coronary blood vessels for bFGF, but we were unable to detect it either in lesioned or normal intima. In contrast, significant bFGF levels were observed in association with the EC and mesangial cells of the renal corpuscle, where heparan sulfate accumulates within the glomerular basement membrane. Our in vitro results suggest that bFGF accumulates within the proteoglycan-containing subendothelial matrix concomitant with the formation of cell-cell contacts. In situ, the composition of the microvascular matrix and the cellular phenotype may facilitate the selective accumulation of bFGF that we observed. This, in turn, may influence vascular morphogenesis and remodeling during angiogenesis.  相似文献   
136.
Pachyphlodes (Pezizaceae) is a genus of truffle-like fungi that is distributed across the Northern Hemisphere. These fungi form ectomycorrhizae primarily with trees in the Fagaceae family, and occasionally with other host plants. The genus Plicariella (= Scabropezia) is phylogenetically inferred as an ally of, or within, the Pachyphlodes lineage. Despite molecular phylogenetic analyses that show the close relationships of species in these two genera, morphological differences in ascomata shape and color, spore ornamentation, and ascus shape are profound. Here, we studied spore wall development to better understand affinities within the PachyphlodesPlicariella lineages. Electron microscopy studies indicate that the initial spore wall development is similar across six Pachyphlodes species and a Plicariella species, despite striking differences in mature spore ornamentation among species. Ultrastructural analyses reveal that differences in spore ornamentation among Pachyphlodes species are due to unique developmental events at the final stages of spore wall deposition. Septal pore ultrastructure in Pachyphlodes species is similar to other Pezizaceae that have been studied. Molecular analyses of the five species studied indicate that four of them have not been previously described. The new species Pachyphlodes annagardnerae is here described, and the ultrastructural features of species of Pachyphlodes, Plicariella, and other Pezizales are compared and discussed.  相似文献   
137.
Escherichia coli mutants with defined mutations in specific mod genes that affect molybdate transport were isolated and analyzed for the effects of particular mutations on the regulation of the mod operon as well as the fdhF and hyc operons which code for the components of the formate hydrogenlyase (FHL) complex. phi (hyc'-'lacZ+) mod double mutants produced beta-galactosidase activity only when they were cultured in medium supplemented with molybdate. This requirement was specific for molybdate and was independent of the moa, mob, and moe gene products needed for molybdopterin guanine dinucleotide (MGD) synthesis, as well as Mog protein. The concentration of molybdate required for FHL production by mod mutants was dependent on medium composition. In low-sulfur medium, the amount of molybdate needed by mod mutants for the production of half-maximal FHL activity was increased approximately 20 times by the addition of 40 mM of sulfate, mod mutants growing in low-sulfur medium transported molybdate through the sulfate transport system, as seen by the requirement of the cysA gene product for this transport. In wild-type E. coli, the mod operon is expressed at very low levels, and a mod+ merodiploid E. coli carrying a modA-lacZ fusion produced less than 20 units of beta-galactosidase activity. This level was increased by over 175 times by a mutation in the modA, modB, or modC gene. The addition of molybdate to the growth medium of a mod mutant lowered phi (modA'-'lacZ+) expression. Repression of the mod operon was sensitive to molybdate but was insensitive to mutations in the MGD synthetic pathway. These physiological and genetic experiments show that molybdate can be transported by one of the following three anion transport system in E. coli: the native system, the sulfate transport system (cysTWA gene products), and an undefined transporter. Upon entering the cytoplasm, molybdate branches out to mod regulation, fdhF and hyc activation, and metabolic conversion, leading to MGD synthesis and active molybdoenzyme synthesis.  相似文献   
138.
Gene libraries (zoolibraries) were constructed in Escherichia coli using DNA isolated from the mixed liquor of thermophilic, anaerobic digesters, which were in continuous operation with lignocellulosic feedstocks for over 10 years. Clones expressing cellulase and xylosidase were readily recovered from these libraries. Four clones that hydrolyzed carboxymethylcellulose and methylumbelliferyl--d-cellobiopyranoside were characterized. All four cellulases exhibited temperature optima (60–65° C) and pH optima (pH 6–7) in accordance with conditions of the enrichment. The DNA sequence of the insert in one clone (plasmid pFGH1) was determined. This plasmid encoded an endoglucanase (celA) and part of a putative -glucosidase (celB), both of which were distinctly different from all previously reported homologues. CelA protein shared limited homology with members of the A3 subfamily of cellulases, being similar to endoglucanase C from Clostridium thermocellum (40% identity). The N-terminal part of CelB protein was most similar to -glucosidase from Pseudomonas fluorescens subsp. cellulosa (28% homology). The use of zoolibraries constructed from natural or laboratory enrichment cultures offers the potential to discover many new enzymes for biotechnological applications.Florida Agricultural Experiment Station Publication R-03408  相似文献   
139.
Microsporidia are small (1–20 μm) obligate intracellular parasites of a variety of eukaryotes, and they are serious opportunistic pathogens of immunocompromised patients [1]. Microsporidia are often assigned to the first branch in gene trees of eukaryotes [2] and [3], and are reported to lack mitochondria [2] and [4]. Like diplomonads and trichomonads, microsporidia are hypothesised to have diverged from the main eukaryotic stock prior to the event that led to the mitochondrion endosymbiosis [2] and [4]. They have thus assumed importance as putative relics of premitochondrion eukaryote evolution. Recent data have now revealed that diplomonads and trichomonads contain genes that probably originated from the mitochondrion endosymbiont [5], [6], [7], [8] and [9], leaving microsporidia as chief candidates for an extant primitively amitochondriate eukaryote group. We have now identified a gene in the microsporidium Vairimorpha necatrix that appears to be orthologous to the eukaryotic (symbiont-derived) Hsp70 gene, the protein product of which normally functions in mitochondria. The simplest interpretation of our data is that microporidia have lost mitochondria while retaining genetic evidence of their past presence. This strongly suggests that microsporidia are not primitively amitochondriate and makes feasible an evolutionary scenario whereby all extant eukaryotes share a common ancestor which contained mitochondria.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号