全文获取类型
收费全文 | 19137篇 |
免费 | 1413篇 |
国内免费 | 1515篇 |
专业分类
22065篇 |
出版年
2024年 | 48篇 |
2023年 | 329篇 |
2022年 | 658篇 |
2021年 | 1088篇 |
2020年 | 670篇 |
2019年 | 905篇 |
2018年 | 802篇 |
2017年 | 558篇 |
2016年 | 876篇 |
2015年 | 1153篇 |
2014年 | 1456篇 |
2013年 | 1520篇 |
2012年 | 1808篇 |
2011年 | 1565篇 |
2010年 | 989篇 |
2009年 | 847篇 |
2008年 | 942篇 |
2007年 | 809篇 |
2006年 | 658篇 |
2005年 | 578篇 |
2004年 | 484篇 |
2003年 | 436篇 |
2002年 | 387篇 |
2001年 | 285篇 |
2000年 | 290篇 |
1999年 | 303篇 |
1998年 | 195篇 |
1997年 | 199篇 |
1996年 | 188篇 |
1995年 | 151篇 |
1994年 | 136篇 |
1993年 | 96篇 |
1992年 | 140篇 |
1991年 | 114篇 |
1990年 | 100篇 |
1989年 | 77篇 |
1988年 | 52篇 |
1987年 | 31篇 |
1986年 | 28篇 |
1985年 | 41篇 |
1984年 | 18篇 |
1983年 | 23篇 |
1982年 | 12篇 |
1981年 | 7篇 |
1980年 | 3篇 |
1979年 | 4篇 |
1965年 | 1篇 |
1963年 | 1篇 |
1962年 | 1篇 |
1950年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
Muhammad Khan Amara Maryam He Zhang Tahir Mehmood Tonghui Ma 《Journal of cellular and molecular medicine》2016,20(3):389-402
Cancer is a multi‐faceted disease comprised of a combination of genetic, epigenetic, metabolic and signalling aberrations which severely disrupt the normal homoeostasis of cell growth and death. Rational developments of highly selective drugs which specifically block only one of the signalling pathways have been associated with limited therapeutic success. Multi‐targeted prevention of cancer has emerged as a new paradigm for effective anti‐cancer treatment. Platycodin D, a triterpenoid saponin, is one the major active components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties including, anti‐nociceptive, anti‐atherosclerosis, antiviral, anti‐inflammatory, anti‐obesity, immunoregulatory, hepatoprotective and anti‐tumour activities. Recently, the anti‐cancer activity of platycodin D has been extensively studied. The purpose of this review was to give our perspectives on the current status of platycodin D and discuss its anti‐cancer activity and molecular mechanisms which may help the further design and conduct of pre‐clinical and clinical trials to develop it successfully into a potential lead drug for oncological therapy. Platycodin D has been shown to fight cancer by inducing apoptosis, cell cycle arrest, and autophagy and inhibiting angiogenesis, invasion and metastasis by targeting multiple signalling pathways which are frequently deregulated in cancers suggesting that this multi‐target activity rather than a single effect may play an important role in developing platycodin D into potential anti‐cancer drug. 相似文献
113.
Reading is an important part of our daily life, and rapid responses to emotional words have received a great deal of research interest. Our study employed rapid serial visual presentation to detect the time course of emotional noun processing using event-related potentials. We performed a dual-task experiment, where subjects were required to judge whether a given number was odd or even, and the category into which each emotional noun fit. In terms of P1, we found that there was no negativity bias for emotional nouns. However, emotional nouns elicited larger amplitudes in the N170 component in the left hemisphere than did neutral nouns. This finding indicated that in later processing stages, emotional words can be discriminated from neutral words. Furthermore, positive, negative, and neutral words were different from each other in the late positive complex, indicating that in the third stage, even different emotions can be discerned. Thus, our results indicate that in a three-stage model the latter two stages are more stable and universal. 相似文献
114.
Microbulbifer hainanensis sp. nov., a moderately halopilic bacterium isolated from mangrove sediment
Cheng Yuping Zhu Suting Guo Chaobo Xie Feilu Jung Dawoon Li Shengying Zhang Weiyan He Shan 《Antonie van Leeuwenhoek》2021,114(7):1033-1042
Antonie van Leeuwenhoek - A new bacterium was successfully isolated from a mangrove sediment sample in Haikou City, Hainan Province, China. The organism is a Gram-negative, rod-shaped, non-motile... 相似文献
115.
Jun Zou Xiao-Yang Yue Sheng-Chao Zheng Guangwei Zhang He Chang Yan-Chun Liao Ye Zhang Mao-Qiang Xue Zhi Qi 《生物化学与生物物理学报:生物膜》2014
It has been shown that cholesterol modulates activity of protein kinase C (PKC), and PKC phosphorylates connexin 43 (Cx43) to regulate its function, respectively. However, it is not known whether cholesterol modulates function of Cx43 through regulating activity of PKC. In the present study, we demonstrated that cholesterol enrichment reduced the dye transfer ability of Cx43 in cultured H9c2 cells. Western blot analysis indicated that cholesterol enrichment enhanced the phosphorylated state of Cx43. Immunofluorescent images showed that cholesterol enrichment made the Cx43 distribution from condensed to diffused manner in the interface between the cells. In cholesterol enriched cells, PKC antagonists partially restored the dye transfer ability among the cells, downregulated the phosphorylation of Cx43 and redistributed Cx43 from the diffused manner to the condensed manner in the cell interface. In addition, reduction of cholesterol level suppressed PKC activity to phosphorylate Cx43 and restored Cx43 function in PKC agonist-treated cells. Furthermore, we demonstrated that cholesterol enrichment upregulated the phosphorylated state of Cx43 at Ser368, while PKC antagonists reversed the effect. Taken together, cholesterol level in the cells plays important roles in regulating Cx43 function through activation of the PKC signaling pathway. 相似文献
116.
Shanquan Wang Caian Fan Adrian Low Jianzhong He 《Applied microbiology and biotechnology》2014,98(6):2667-2673
Wastewater treatment plants (WWTPs) are major collection pools of antibiotics of which low concentrations may induce antibiotic resistance in their microbial communities and pose threat to human health. However, information is still limited on the microbial community alteration in WWTPs upon exposure to low-dose antibiotics due to absence of negative control systems without input of resistant bacteria and resistance genes. Here we report the impact of trace erythromycin (ERY) and dehydrated erythromycin (ERY-H2O) on microbial community dynamics in three long-term (1 year) running sequencing batch reactors (SBRs), R1 (ERY-H2O), R2 (ERY), and negative control R3. The PhyloChip microarray analysis showed that ERY-H2O and ERY significantly altered their microbial communities based on bacterial richness (e.g., 825 operational taxonomic units (OTUs) in R1, 699 OTUs in R2, and 920 OTUs in R3) and population abundance (15 and 48 subfamilies with >80 % abundance decrease in R1 and R2, respectively). ERY-H2O and ERY have broad but distinct antimicrobial spectrums. For example, bacteria of all the major phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi) present in SBRs were severely inhibited by ERY-H2O and ERY, but bacteria of Acidobacteria, Chlorobi, Firmicutes, Nitrospira and OP10 phyla were only inhibited by ERY. Very limited bacterial groups showed antibiotic resistance to ERY-H2O or ERY through forming biofilms (e.g., Zoogloea) or synthesizing resistant proteins (e.g., Thauera, Candidatus Accumulibacter, Candidatus Competibacter, and Dechloromonas) in the SBRs. Inhibition was observed to be the main effect of ERY-H2O and ERY on microbial communities in the reactors. The results would broaden our knowledge of effects of low-dose antibiotics on microbial communities in WWTPs. 相似文献
117.
Shao-Yun Chen Xiu-Juan He Jian-Ping Wu Gang Xu Li-Rong Yang 《Biotechnology and Bioprocess Engineering》2014,19(1):26-32
The biocatalytic cascade conversion of ethyl 4-chloroacetoacetate (COBE) to ethyl (R)-4-cyano-3-hydroxybutyrate ((R)-HN) for the preparation of atorvastatin represents significant economic and environmental benefits, and is catalyzed by alcohol dehydrogenase and halohydrin dehalogenase (HHDH). However, as the activity of HHDH is inhibited by COBE, the cascade reaction is an inefficient one-pot reaction. In this study, substrate inhibition kinetics analysis was performed and the inhibition by COBE was found to be competitive reversible inhibition. Molecular simulation analysis was used to determine the inhibition mechanism by COBE. The results showed that COBE bound to the active center of HHDH via the formation of hydrogen bonds with the OH groups of S132 and Y145. Site saturation mutagenesis of residues around the active site and at the entrance of the access tunnel was performed, and two target mutant residues were identified, F136 and W249. Small focused mutagenesis on these two residues was performed and the F136V/W249F mutant was successfully found to relieve the activity inhibition of HHDH by COBE. The half inhibiting concentration of mutant F136V/W249F was found to be 20-fold higher than wild-type HHDH. The efficiency of the multi-enzymatic one-pot system for the synthesis of (R)-HN from COBE using mutant F136V/W249F was improved significantly. 相似文献
118.
119.
Kangmin He Xiaohua Yan Nan Li Song Dang Li Xu Bing Zhao Zijian Li Zhizhen Lv Xiaohong Fang Youyi Zhang Ye-Guang Chen 《Cell research》2015,25(6):738-752
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors. 相似文献
120.
Y-H Wu W-C Kuo Y-J Wu K-T Yang S-T Chen S-T Jiang C Gordy Y-W He M-Z Lai 《Cell death and differentiation》2014,21(3):451-461
Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of caspase-8 and is required for macrophage survival. Recent studies have revealed a selective role of caspase-8 in noncanonical IL-1β production that is independent of caspase-1 or inflammasome. Here we demonstrated that c-FLIPL is an unexpected contributor to canonical inflammasome activation for the generation of caspase-1 and active IL-1β. Hemizygotic deletion of c-FLIP impaired ATP- and monosodium uric acid (MSU)-induced IL-1β production in macrophages primed through Toll-like receptors (TLRs). Decreased IL-1β expression was attributed to a reduced activation of caspase-1 in c-FLIP hemizygotic cells. In contrast, the production of TNF-α was not affected by downregulation in c-FLIP. c-FLIPL interacted with NLRP3 or procaspase-1. c-FLIP is required for the full NLRP3 inflammasome assembly and NLRP3 mitochondrial localization, and c-FLIP is associated with NLRP3 inflammasome. c-FLIP downregulation also reduced AIM2 inflammasome activation. In contrast, c-FLIP inhibited SMAC mimetic-, FasL-, or Dectin-1-induced IL-1β generation that is caspase-8-mediated. Our results demonstrate a prominent role of c-FLIPL in the optimal activation of the NLRP3 and AIM2 inflammasomes, and suggest that c-FLIP could be a valid target for treatment of inflammatory diseases caused by over-activation of inflammasomes. 相似文献