首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19392篇
  免费   1506篇
  国内免费   1471篇
  22369篇
  2024年   192篇
  2023年   375篇
  2022年   673篇
  2021年   1101篇
  2020年   694篇
  2019年   906篇
  2018年   802篇
  2017年   568篇
  2016年   879篇
  2015年   1155篇
  2014年   1459篇
  2013年   1523篇
  2012年   1809篇
  2011年   1569篇
  2010年   992篇
  2009年   853篇
  2008年   945篇
  2007年   811篇
  2006年   664篇
  2005年   579篇
  2004年   486篇
  2003年   436篇
  2002年   388篇
  2001年   285篇
  2000年   292篇
  1999年   304篇
  1998年   195篇
  1997年   199篇
  1996年   190篇
  1995年   153篇
  1994年   136篇
  1993年   97篇
  1992年   141篇
  1991年   116篇
  1990年   100篇
  1989年   77篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   41篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 1 毫秒
101.

Background

Although diabetic retinopathy (DR) has long been considered as a microvascular disorder, mounting evidence suggests that diabetic retinal neurodegeneration, in particular synaptic loss and dysfunction of retinal ganglion cells (RGCs) may precede retinal microvascular changes. Key molecules involved in this process remain poorly defined. The microtubule-associated protein tau is a critical mediator of neurotoxicity in Alzheimer’s disease (AD) and other neurodegenerative diseases. However, the effect of tau, if any, in the context of diabetes-induced retinal neurodegeneration has yet to be ascertained. Here, we investigate the changes and putative roles of endogeneous tau in diabetic retinal neurodegeneration.

Methods

To this aim, we combine clinically used electrophysiological techniques, i.e. pattern electroretinogram and visual evoked potential, and molecular analyses in a well characterized high-fat diet (HFD)-induced mouse diabetes model in vivo and primary retinal ganglion cells (RGCs) in vitro.

Results

We demonstrate for the first time that tau hyperphosphorylation via GSK3β activation causes vision deficits and synapse loss of RGCs in HFD-induced DR, which precedes retinal microvasculopathy and RGCs apoptosis. Moreover, intravitreal administration of an siRNA targeting to tau or a specific inhibitor of GSK3β reverses synapse loss and restores visual function of RGCs by attenuating tau hyperphosphorylation within a certain time frame of DR. The cellular mechanisms by which hyperphosphorylated tau induces synapse loss of RGCs upon glucolipotoxicity include i) destabilizing microtubule tracks and impairing microtubule-dependent synaptic targeting of cargoes such as mRNA and mitochondria; ii) disrupting synaptic energy production through mitochondria in a GSK3β-dependent manner.

Conclusions

Our study proposes mild retinal tauopathy as a new pathophysiological model for DR and tau as a novel therapeutic target to counter diabetic RGCs neurodegeneration occurring before retinal vasculature abnormalities.
  相似文献   
102.
X. Ma  P. Li  Q. Zhang  L. He  G. Su  Y. Huang  Z. Lu  W. Hu  H. Ding  R. Huang 《Animal genetics》2019,50(4):326-333
Embryonic survival rate, an important factor in the fecundity of sows, is affected by endometrium‐secreting histotroph. A higher concentration of calcium ion has been observed in the uterus of highly prolific Erhualian sows (EH) compared with those of less prolific (EL) sows. This suggests that EH sows have better establishment and maintenance of pregnancies, thus increasing embryonic survival rate during the peri‐implantation period. To understand the mechanisms of how the endometrium‐secreting histotroph affects embryonic survival rate during the Erhualian peri‐implantation period, the expression patterns of endometrial mRNA in the EH and EL sows on day 12 of gestation were analyzed using RNA sequencing technology. A total of 164 differentially expressed genes (DEGs) were identified (Padj < 0.05, |log2(FC)| ≥ 1), including 46 upregulated and 118 downregulated genes in EH compared to EL. Gene Ontology enrichment indicated that a subset of DEGs was involved in calcium ion binding and cell adhesion. Solute carrier family 8 member A3 and solute carrier family 24 member 4, identified as upregulated genes (Padj < 0.05) in EH, were considered key candidate genes expressed in the endometrium affecting embryonic survival rate during the peri‐implantation period. The results improve understanding of the genetic mechanism underlying the variation in litter size of Erhualian pigs during the peri‐implantation period.  相似文献   
103.
Ding  Yanqing  Xu  Hai  Deng  Jianming  Qin  Boqiang  He  Youwen 《Hydrobiologia》2019,829(1):167-187
Hydrobiologia - An increased nutrient loading drives eutrophication of lake ecosystems. Nutrient loading has two different origins: (1) internal loading due to nutrients release from sediments and...  相似文献   
104.
105.
A series of dihydroxyphenylpyrazole compounds were identified as a unique class of reversible Hsp90 inhibitors. The crystal structures for two of the identified compounds complexed with the N-terminal ATP binding domain of human Hsp90alpha were determined. The dihydroxyphenyl ring of the compounds fits deeply into the adenine binding pocket with the C2 hydroxyl group forming a direct hydrogen bond with the side chain of Asp93. The pyrazole ring forms hydrogen bonds to the backbone carbonyl of Gly97, the hydroxyl group of Thr184 and to a water molecule, which is present in all of the published HSP90 structures. One of the identified compounds (G3130) demonstrated cellular activities (in Her-2 degradation and activation of Hsp70 promoter) consistent with the inhibition of cellular Hsp90 functions.  相似文献   
106.
Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.  相似文献   
107.
Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110–CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110–CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.  相似文献   
108.
Sulfotransferase (SULT)-mediated sulfation represents a critical mechanism in regulating the chemical and functional homeostasis of endogenous and exogenous molecules. The cholesterol sulfotransferase SULT2B1b catalyzes the sulfoconjugation of cholesterol to synthesize cholesterol sulfate (CS). In this study, we showed that the expression of SULT2B1b in the liver was induced in obese mice and during the transition from the fasted to the fed state, suggesting that the regulation of SULT2B1b is physiologically relevant. CS and SULT2B1b inhibited gluconeogenesis by targeting the gluconeogenic factor hepatocyte nuclear factor 4α (HNF4α) in both cell cultures and transgenic mice. Treatment of mice with CS or transgenic overexpression of the CS-generating enzyme SULT2B1b in the liver inhibited hepatic gluconeogenesis and alleviated metabolic abnormalities both in mice with diet-induced obesity (DIO) and in leptin-deficient (ob/ob) mice. Mechanistically, CS and SULT2B1b inhibited gluconeogenesis by suppressing the expression of acetyl coenzyme A (acetyl-CoA) synthetase (Acss), leading to decreased acetylation and nuclear exclusion of HNF4α. Our results also suggested that leptin is a potential effector of SULT2B1b in improving metabolic function. We conclude that SULT2B1b and its enzymatic by-product CS are important metabolic regulators that control glucose metabolism, suggesting CS as a potential therapeutic agent and SULT2B1b as a potential therapeutic target for metabolic disorders.  相似文献   
109.
Seven new nitrogen heterocycle porphyrins, 5,10,15,20-tetra[4-(N-pyrrolidinyl)phenyl]porphine (TBPPH(2)), 5,10,15,20-tetra[4-(4'-ethylpiperazinyl)phenyl]porphine (TEPPH(2)), 5,10,15,20-tetra [4-(4'-butylpiperazinyl)phenyl]porphine (TUPPH(2)), 5,10,15,20-tetra[4-(4'-heptylpiperazinyl) phenyl]porphine (THPPH(2)), 5-[4-(4'-ethylpiperazinyl)phenyl]-10,15,20-triphenylporphine (MEPPH(2)), 5-[4-(4'-buthylpiperazinyl)phenyl]-10,15,20-triphenylporphine (MUPPH(2)) and piperazine bridge porphine dimer N,N'-di(5,10,15,20-tetraphenylporphinato)piperazine (DiPPH(2)) have been synthesized by the direct condensation of nitrogen heterocycle substituted benzaldehydes with pyrrole. Each porphine bears one or four substituted pyrrolidine or piperazine moieties that have been used as drugs. Their structures were characterized by elementary analysis, MS, 1H NMR, IR and UV-vis. These nitrogen heterocycle porphyrins aggregates in water and THF solution were studied by the spectrophotofluorimetry. The anticancer activity of these porphines for the liver cancer cells, the stomach tumor cells and the nasopharyngeal carcinoma cancer cells were tested by the MTT assay. Compared with cis-platinum (cis-Pt) and 5-Fluorouracil (5-Fu), the nitrogen heterocycle porphyrins have the better biological activity and might have potential application in medicine.  相似文献   
110.
The greenhouse whitefly, Trialeurodes vaporariorum Westwood, is an agricultural pest of global importance. Here we report a 787‐Mb high‐quality draft genome sequence of T. vaporariorum assembled from PacBio long reads and Hi‐C chromatin interaction maps, which has scaffold and contig N50 lengths of 70 Mb and 500 kb, respectively, and contains 18,275 protein‐coding genes. About 98.8% of the assembled contigs were placed onto the 11 T. vaporariorum chromosomes. Comparative genomic analysis reveals significantly expanded gene families such as aspartyl proteases in T. vaporariorum compared to Bemisia tabaci Mediterranean (MED) and Middle East‐Asia Minor 1 (MEAM1). Furthermore, the cytochrome CYP6 subfamily shows significant expansion in T. vaporariorum and several genes in this subfamily display developmental stage‐specific expression patterns. The high‐quality T. vaporariorum genome provides a valuable resource for research in a broad range of areas such as fundamental molecular ecology, insect–plant/insect–microorganism or virus interactions and pest resistance management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号