首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37234篇
  免费   3140篇
  国内免费   2828篇
  43202篇
  2024年   117篇
  2023年   565篇
  2022年   1163篇
  2021年   1901篇
  2020年   1268篇
  2019年   1544篇
  2018年   1470篇
  2017年   1081篇
  2016年   1539篇
  2015年   2236篇
  2014年   2671篇
  2013年   2811篇
  2012年   3299篇
  2011年   2995篇
  2010年   1926篇
  2009年   1646篇
  2008年   1819篇
  2007年   1656篇
  2006年   1417篇
  2005年   1220篇
  2004年   1089篇
  2003年   959篇
  2002年   882篇
  2001年   670篇
  2000年   679篇
  1999年   660篇
  1998年   355篇
  1997年   354篇
  1996年   343篇
  1995年   270篇
  1994年   281篇
  1993年   184篇
  1992年   292篇
  1991年   260篇
  1990年   221篇
  1989年   172篇
  1988年   134篇
  1987年   127篇
  1986年   110篇
  1985年   133篇
  1984年   66篇
  1983年   71篇
  1982年   60篇
  1981年   42篇
  1980年   40篇
  1979年   56篇
  1978年   41篇
  1977年   46篇
  1975年   35篇
  1974年   45篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Mitochondrial outer membrane permeabilization (MOMP) is a critical control point during apoptosis that results in the release of pro-apoptotic mitochondrial contents such as cytochrome c. MOMP is largely controlled by Bcl-2 family proteins such as Bax, which under various apoptotic stresses becomes activated and oligomerizes on the outer mitochondrial membrane. Bax oligomerization helps promote the diffusion of the mitochondrial contents into the cytoplasm activating the caspase cascade. In turn, Bax is regulated primarily by anti-apoptotic Bcl-2 proteins including Bcl-xL, which was recently shown to prevent Bax from accumulating at the mitochondria. However, the exact mechanisms by which Bcl-xL regulates Bax and thereby MOMP remain partially understood. In this study, we show that the small CHCH-domain-containing protein CHCHD2 binds to Bcl-xL and inhibits the mitochondrial accumulation and oligomerization of Bax. Our data show that in response to apoptotic stimuli, mitochondrial CHCHD2 decreases prior to MOMP. Furthermore, when CHCHD2 is absent from the mitochondria, the ability of Bcl-xL to inhibit Bax activation and to prevent apoptosis is attenuated, which results in increases in Bax oligomerization, MOMP and apoptosis. Collectively, our findings establish CHCHD2, a previously uncharacterized small mitochondrial protein with no known homology to the Bcl-2 family, as one of the negative regulators of mitochondria-mediated apoptosis.Apoptosis is a tightly regulated form of programmed cell death that is critical for proper embryonic development, tissue homeostasis and immune response. Aberrant regulation of apoptosis contributes to a wide range of ailments including autoimmune disorders, neurodegenerative diseases and cancer. Unlike necrotic cell death, apoptosis is a genetic program that is characterized by distinct morphological features such as membrane blebbing, chromatin condensation, DNA fragmentation and cell shrinkage.1 In vertebrates, apoptosis can occur through two pathways: extrinsic, or receptor-mediated apoptosis, and intrinsic, or mitochondria-mediated apoptosis. Intrinsic apoptosis is induced by cellular stressors such as DNA damage, which lead to mitochondrial outer membrane permeabilization (MOMP), cytochrome c release from the mitochondrial intermembrane space, activation of cysteine proteases (caspases) and induction of apoptosis. Once MOMP occurs, cell death is thought to be inevitable. Therefore, much research has been devoted to elucidating the mechanisms and signaling pathways that govern this critical regulatory point in apoptosis.MOMP is controlled largely by the B-cell lymphoma 2 (Bcl-2) family of proteins,2 all of which contain at least one of four BH (Bcl-2 homology) domains designated BH1–4. During apoptosis, the pro-apoptotic Bcl-2 proteins Bax and/or Bak become activated and oligomerize on the mitochondrial outer membrane3 increasing mitochondrial membrane permeabilization through a mechanism that is not entirely clear. Bax and Bak are activated by BH3-only Bcl-2 family proteins such as Bim, t-Bid and Puma.4, 5, 6, 7, 8, 9, 10, 11, 12, 13 Conversely, Bax and Bak are inhibited by pro-survival Bcl-2 family proteins such as Bcl-2, Mcl-1 and Bcl-xL.2, 14, 15, 16 Of the pro-survival Bcl-2 family proteins, Bcl-2 is found at the outer mitochondrial membrane, whereas Bcl-xL and Mcl-1 localize to the outer mitochondrial membrane and the mitochondrial matrix.17, 18 Matrix-localized Bcl-xL and Mcl-1 have been shown to promote mitochondrial respiration,19 suggesting that crosstalk exists between apoptotic pathways and other mitochondria-based biological events. Based on this recent discovery, one might reason that other mitochondrial proteins previously characterized as structural proteins or metabolism-associated enzymes could play an additional intermediate role in the regulation of apoptosis by interacting with Bcl-2 family proteins.We identified CHCHD2 in a mass spectrometry-based screen for binding partners of p32, a mitochondrial protein previously shown by our lab to bind and mediate the apoptotic effects of the tumor suppressor p14ARF.20 CHCHD2 was subsequently detected in independent screens for proteins that regulate cellular metabolism and migration;21, 22 however, the functions of CHCHD2 remain unknown. CHCHD2 is encoded by the chchd2 gene (coiled-coil helix coiled-coil helix domain-containing 2), which spans 4921 base pairs, contains 4 exons, and is located on human chromosome 7p11.2, a chromosomal region that is often amplified in glioblastomas.23 The protein encoded by the chchd2 gene is ubiquitously expressed24 and is relatively small, as it codes for only 151 amino acids. CHCHD2 is well-conserved among different species from humans to yeast, and mouse and human CHCHD2 share 87% amino acid sequence identity (Supplementary Figures S1A and S1B). CHCHD2 contains a C-terminal CHCH (coiled-coil helix coiled-coil helix) domain, which is characterized primarily by four cysteine residues spaced 10 amino acids apart from one another (CX(9)C motif).25 The function of the CHCH domain is not well understood, and the few characterized proteins that harbor this domain have diverse functions. Many CHCH domain-containing proteins localize to the mitochondrial inner membrane or the intermembrane space, including Cox12, Cox17, Cox19, Cox23, Mia40 (yeast homolog of human CHCHD4), CHCHD3 and CHCHD6. Cox17 and Cox19 aid in the assembly of the COX complex,26, 27 whereas Mia40/Tim40 has been shown to transport proteins into the mitochondrial intermembrane space.28, 29 Furthermore, CHCHD3 and CHCHD6 are essential for maintaining the integrity of mitochondrial cristae and thus mitochondrial function.30, 31, 32 Interestingly, a recent report has shown that CHCHD6 is regulated by DNA damage stress, and alterations in CHCHD6 expression affect the viability of breast cancer cells in response to genotoxic anticancer drugs.32Despite advances in our understanding of how MOMP and apoptosis are regulated by the Bcl-2 family of proteins, much remains unknown with respect to the mechanisms that lead to Bax activation and oligomerization particularly concerning the roles that mitochondria-associated proteins play in the process. In this study, we characterize the small, mitochondria-localized protein CHCHD2 as a novel regulator of Bax oligomerization and apoptosis. Furthermore, we show evidence that CHCHD2 binds to Bcl-xL at the mitochondria under unstressed conditions. In response to apoptotic stimuli, CHCHD2 decreases and loses its mitochondria localization, which is accompanied by decreased Bcl-xL–Bax interaction and increased Bax homo-oligomerization and Bax–Bak hetero-oligomerization. Collectively, our results suggest that CHCHD2 negatively regulates the apoptotic cascade upstream of Bax oligomerization.  相似文献   
982.
Development of antifouling strategies requires knowledge of how fouling organisms would respond to climate change associated environmental stressors. Here, a calcareous tube built by the tubeworm, Hydroides elegans, was used as an example to evaluate the individual and interactive effects of ocean acidification (OA), warming and reduced salinity on the mechanical properties of a tube. Tubeworms produce a mechanically weaker tube with less resistance to simulated predator attack under OA (pH 7.8). Warming (29°C) increased tube volume, tube mineral density and the tube’s resistance to a simulated predatory attack. A weakening effect by OA did not make the removal of tubeworms easier except for the earliest stage, in which warming had the least effect. Reduced salinity (27 psu) did not affect tubes. This study showed that both mechanical analysis and computational modeling can be integrated with biofouling research to provide insights into how fouling communities might develop in future ocean conditions.  相似文献   
983.
984.
Compelling evidences have suggested that high mobility group box-1 (HMGB1) gene plays a crucial role in cancer development and progression. This study aimed to evaluate the effects of single nucleotide polymorphisms (SNPs) in HMGB1 gene on the survival of gastric cancer (GC) patients. Three tag SNPs from HMGB1 gene were selected and genotyped using Sequenom iPEX genotyping system in a cohort of 1030 GC patients (704 in training set, 326 in validation set). Multivariate Cox proportional hazard model and Kaplan-Meier Curve were used for prognosis analysis. AG/AA genotypes of SNP rs1045411 in HMGB1 gene were significantly associated with better overall survival (OS) in a set of 704 GC patients when compared with GG genotypes (HR = 0.77, 95% CI: 0.60–0.97, P = 0.032). This prognostic effect was verified in an independent validation set and pooled analysis (HR = 0.80, 95% CI: 0.62–0.99, P = 0.046; HR = 0.78, 95% CI: 0.55–0.98, P = 0.043, respectively). In stratified analysis, the protective effect of rs1045411 AG/AA genotypes was more prominent in patients with adverse strata, compared with patients with favorable strata. Furthermore, strong joint predictive effects on OS of GC patients were noted between rs1045411 genotypes and Lauren classification, differentiation, stage or adjuvant chemotherapy. Additionally, functional assay indicated a significant effect of rs1045411 on HMGB1 expression. Our results suggest that rs1045411 in HMGB1 is significantly associated with clinical outcomes of Chinese GC patients after surgery, especially in those with aggressive status, which warrants further validation in other ethnic populations.  相似文献   
985.
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies.  相似文献   
986.
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.  相似文献   
987.
Depletion of T‐cell‐dependent immunity is a major consideration for patients suffering from infections of human immunodeficiency virus (HIV), those undergoing organ transplantation, and those receiving anti‐cancer chemotherapy and/or radiotherapy. In general, T‐cell regeneration occurs in the thymus through thymopoiesis. We have found that doxycycline (Dox), a tetracycline derivative, enhances the proliferation of mouse thymic epithelial cells, which are unique in their capacity to support positive selection and are essential throughout the development of thymocytes. Cell cycle analysis indicates that the increased cell proliferation is due to a shortened G0/G1 phase. To reveal the underlying mechanisms, we examined the expression of an array of molecules that regulate the cell cycle. The results show that in mouse thymic medullary‐type epithelial cell line 1 (MTEC1) Dox leads to elevated levels of H‐Ras, phosphorylated extracellular signal‐regulated kinase 1/2 (p‐ERK1/2), cyclin E, cyclin dependent kinase 4/2 (CDK4/CDK2), E2F3, and c‐myc. These data, and the observation that the proliferation‐enhancing effect is largely abolished following treatment with an ERK inhibitor support an active role of the Ras‐ERK/mitogen‐activated protein kinase (MAPK) signaling pathway. In conclusion, the present study reveals a new activity of an old family of antibiotics. The in vivo effect of Dox on immune reconstitution warrants further exploration. J. Cell. Biochem. 107: 494–503, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
988.
Umbilical cord (UC) and placenta (P) have been suggested as alternatives to bone marrow (BM) as sources of mesenchymal stem cells (MSC) for cell therapy, with both UC‐ and P‐MSC possess immunophenotypic and functional characteristics similar to BM‐MSC. However, their migration capacity, which is indispensable during tissue regeneration process, is unclear. Under defined conditions, the migration capacity of BM‐ and P‐MSC was found 5.9‐ and 3.2‐folds higher than that of UC‐MSC, respectively. By the use of 2‐DE and combined MS and MS/MS analysis, six differentially expressed proteins were identified among these MSC samples, with five of them known to be involved in cell migration as migration enhancing or inhibiting proteins. Consistent with their migration capacity, the levels of migration enhancing proteins including cathepsin B, cathepsin D and prohibitin,were significantly lower in UC‐MSC when compared with those in BM‐ and P‐MSC. For the migration inhibiting proteins such as plasminogen activator inhibitor‐1 (PAI‐1) and manganese superoxide dismutase, higher expression was found in the UC‐MSC. We also showed that the overexpression of the PAI‐1 impaired the migration capacity of BM‐ and P‐MSC while silencing of PAI‐1 enhanced the migration capacity of UC‐MSC. Our study indicates that PAI‐1 and other migration‐related proteins are pivotal in governing the migration capacity of MSC.  相似文献   
989.
990.
In order to analyse genetic relationships between functional strain Xhhh previously constructed through protoplast fusion for pharmaceutical wastewater treatment and its parents, random amplification polymorphic DNA (RAPD) and polymerase chain reaction (PCR) were used to investigate genetic similarities among the strains based on genome and functional genes analyses. A total of 739 clear and consistent bands were produced in the RAPD fingerprint analysis with 40 primers. The genetic similarity indices between Xhhh and parental strains PC (Phanerochaete chrysosporium), SC (Saccharomyces cerevisiae) and XZ (native bacterium Bacillus sp.) were 36.21%, 37.73% and 37.48%, respectively. With PCR amplification and DNA sequencing, Xhhh was found containing functional genes of mnp and lip from PC, FLO1 from SC and 16S rDNA fragments from XZ. Experimental results of genetic analyses were in accordance with Xhhh biochemical and phenotypic characteristics, and protoplast fusion technique is considered as a promising technique in environmental pollution control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号