首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   19篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   7篇
  2015年   7篇
  2014年   6篇
  2013年   26篇
  2012年   30篇
  2011年   19篇
  2010年   16篇
  2009年   8篇
  2008年   23篇
  2007年   20篇
  2006年   10篇
  2005年   6篇
  2004年   14篇
  2003年   13篇
  2002年   7篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有266条查询结果,搜索用时 15 毫秒
251.
Aggrecan is degraded by several aggrecanase-1 (ADAMTS-4) isoforms differing in the number of sulfated glycosaminoglycan (sGAG)-binding motifs. ADAMTS-4 and MMPs cleave aggrecan more efficiently within the chondroitin sulfate (CS)-rich region than the interglobular domain (IGD). We investigated the influence of CS on aggrecan core protein cleavage by ADAMTS-4 (p68) and (p40) as well as MMP-13, which has no recognizable GAG-binding sites. Chondroitinase ABC-treated cartilage aggrecan was cleaved with ADAMTS-4 (p68) less efficiently than CS-substituted aggrecan within the CS-2 domain. Keratanase-treated aggrecan exhibited reduced IGD cleavage, but when both CS and KS were removed, the IGD cleavage was restored. This result suggests that KS in the IGD may compete with CS for ADAMTS-4 (p68) binding. In the absence of KS, however, p68 binding was shifted to the CS-2 domain. CS-deficient full-length recombinant aggrecan (rbAgg) was produced by chondroitinase ABC treatment, or by expression in the xylosyltransferase-deficient CHO-pgsA745 cell line. When digested with the ADAMTS-4 (p68), each of these preparations exhibited reduced CS-2 domain cleavage compared to CS-substituted CHO-K1 cell-derived aggrecan. Additionally, CS-deficient rbAgg showed increased IGD scission prior to cleavage within the CS-2 domain. ADAMTS-4 (p40) readily cleaved both rbAggs within the IGD, but cleaved poorly within the CS-2 domain, indicating little CS dependence. MMP-13, in contrast, cleaved the CS region and the IGD of both CS-substituted and CS-deficient rbAgg equally well. These data indicate that covalently bound CS enhances ADAMTS-4-mediated cleavage within the CS-rich region. MMP-13 also cleaves preferentially within the CS-region, but by an apparently CS-independent mechanism.  相似文献   
252.
We investigated seasonal fluctuation patterns in species and individuals of adult butterflies and flowering plants providing nectar in a semi-natural grassland in central Japan. We considered their interrelationships and implications for conservation. The semi-natural grassland included different vegetation structures and management regimes, including: (1) firebreaks where the grass was mowed and removed, (2) plantation areas that were mowed, (3) unpaved roads with mowed banks, (4) abandoned grassland, (5) scattered scrub forest, and (6) the surrounding forest. The sites with management (e.g., firebreaks), plantations and banks of the unpaved road sustained a larger number of butterflies and flowers than sites without management, such as the abandoned grassland, scrub forest and surrounding forest. The number of butterflies increased in the firebreak in June and at all sites in August and September. The firebreak sustained flowers in the spring, and the plantation area and banks of the unpaved road sustained flowers primarily in August and September, which was correlated with the distribution of butterflies. The different treatments such as mowing or mowing with removal of grass induced different numbers of flowers of each species affecting the habitat of adult butterflies through a season. On the other hand, the shrub tree species composing the scrub forest were host plants for the larvae of certain butterfly species. Our results suggest that heterogeneous environments with different human management or different vegetation structure or both could support habitat for various butterfly species, depending on the season and the seral stage.  相似文献   
253.
Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitorcell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration.  相似文献   
254.
The expression of alpha-synuclein, a synaptic molecule implicated in the pathogenesis of neurodegenerative disorders such as Parkinson's disease and Lewy body disease is increased upon injury to the nervous system, indicating that it might play a role in regeneration and plasticity; however, the mechanisms are unclear. Because c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, plays an important role in stress response, the main objective of the present study was to better understand the involvement of this pathway in the signaling responses associated with resistance to injury in cells expressing alpha-synuclein. For this purpose, the JNK-signaling pathway was investigated in alpha-synuclein-transfected neuronal cell line glucose transporter (GT) 1-7 under oxidative stress conditions. Although hydrogen peroxide challenge resulted in JNK activation and cell death in cells transfected with vector control or beta-synuclein, alpha-synuclein-transfected cells were resistant to hydrogen peroxide, and JNK was not activated. The inactivation of JNK in the alpha-synuclein-transfected cells was associated with increased expression and activity of JNK-interacting protein (JIP)-1b/islet-brain (IB)1, the scaffold protein for the JNK pathway. Similarly, cells transfected with JIP-1b/IB1 were resistant to hydrogen peroxide associated with inactivation of the JNK pathway. In these cells, expression of endogenous alpha-synuclein was significantly increased at the protein level. Furthermore, alpha-synuclein was co-localized with JIP-1b/IB1 in the growth cones. Taken together, these results suggest that increased alpha-synuclein expression might protect cells from oxidative stress by inactivation of JNK via increased expression of JIP-1b/IB1. Furthermore, interactions between alpha-synuclein and JIP-1b/IB1 may play a mutual role in the neuronal response to injury and neurodegeneration.  相似文献   
255.
Summary The biodegradability of poly(vinyl alcohol) (PVA) was analyzed with respect to its molecular weight and stereoregularity using the isolated PVA-assimilating microbial strain,Alcaligenes faecalis KK314. The biodegradability of PVA was influenced by its stereoregularity, and the isotactic moiety was preferentially biodegraded. However, there is no difference in the biodegradability based on the molecular weight of PVA being larger than the octamer.  相似文献   
256.
Kudara  Takato  Kochi  Kaori 《Journal of Ethology》2023,41(3):215-222
Journal of Ethology - Myxobdella sinanensis Oka, 1925 (Arhynchobdellida, Praobdellidae) is endemic to Japan, and was recently observed attaching to the freshwater Japanese crab, Geothelphusa...  相似文献   
257.
258.
Hamartoma designates an excessive focal overgrowth of mature normal cells and tissues in an organ or tissue composed of identical cellular elements. Two cases of hamartoma at the back of the tongue are reported. Histologically they comprised fibrous tissue, fat, salivary gland lobules, and smooth muscle. The literature is reviewed and discussed.  相似文献   
259.
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号