首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   19篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   7篇
  2015年   7篇
  2014年   6篇
  2013年   26篇
  2012年   30篇
  2011年   19篇
  2010年   16篇
  2009年   8篇
  2008年   23篇
  2007年   20篇
  2006年   10篇
  2005年   6篇
  2004年   14篇
  2003年   13篇
  2002年   7篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有266条查询结果,搜索用时 78 毫秒
141.
Orexin A and B, also called hypocretin 1 and 2, were recently discovered in the hypothalamus. This organ, in which a number of neuropeptides have been demonstrated to stimulate or suppress food intake, is considered important for the regulation of appetite and energy homeostasis. Orexins were initially reported as a regulator of food intake. More recent reports suggest their possible important roles in the multiple functions of neuronal systems, such as narcolepsy, a sleep disorder. Orexins and their receptors are distributed in neural tissue and brain regions involved in the autonomic and neuroendocrine control. Functional studies have shown that these peptides evoke changes in cardiovascular and sympathetic responses. The data from our in vivo and in vitro studies suggest that the peptide acting on neurons in the hypothalamic paraventricular nucleus increases the cardiovascular responses. This review will focus on the neural effects of orexins and how these peptides may participate in the regulation of cardiovascular and sympathetic functions.  相似文献   
142.
The Crk-associated substrate (Cas) is a unique docking protein that possesses a repetitive stretch of tyrosine-containing motifs and an Src homology 3 (SH3) domain. Embryonic fibroblasts lacking Cas demonstrated resistance to Src-induced transformation along with impaired actin bundling and cell motility, indicating critical roles of Cas in actin cytoskeleton organization, cell migration, and oncogenesis. To gain further insight into roles of each domain of Cas in these processes, a compensation assay was performed by expressing a series of Cas mutants in Cas-deficient fibroblasts. The results showed that motifs containing YDxP were indispensable for actin cytoskeleton organization and cell migration, suggesting that CrkII-mediated signaling regulates these biological processes. The C-terminal Src-binding domain played essential roles in cell migration and membrane localization of Cas, although it was dispensable in the organization of actin stress fibers. Furthermore, the Src-binding domain was also a prerequisite for Src transformation possibly, because of its crucial role in the phosphorylation of Cas during transformation. Overall, differential uses of the Cas domains in individual biological processes were demonstrated.  相似文献   
143.
Watanabe S  Imai M  Ohara Y  Odagiri T 《Journal of virology》2003,77(19):10630-10637
A bicistronic mRNA transcribed from the influenza B virus RNA segment 7 encodes two viral proteins, matrix protein M1 and uncharacterized small protein BM2. In the present study, we focused on the cytoplasmic transport and cellular membrane association of BM2. Immunofluorescence studies of virus-infected cells indicated that BM2 accumulated at the Golgi apparatus immediately after synthesis and then was transported to the plasma membrane through the trans-Golgi network. Localization of a set of BM2 deletion mutants revealed that the N-terminal half of BM2 (residues 2 to 50) was crucial for its transport; in particular, the deletion of residues 2 to 23, deduced to be a transmembrane domain, resulted in diffused distribution of the protein throughout the entire cell. Sucrose gradient flotation and biochemical analyses of the membrane showed that BM2 was tightly associated with cellular membranes as an integral membrane protein. Oligomerization of BM2 was demonstrated by coprecipitation of differentially epitope-tagged BM2 proteins. Taken together, these results strongly suggest that BM2 is integrated into the plasma membrane at the N-terminal hydrophobic domain as fourth membrane protein, in addition to hemagglutinin, neuraminidase, and NB, of the influenza B virus.  相似文献   
144.
Src family kinases are major regulators of various integrin-mediated biological processes, although their functional roles and substrates in cancer metastasis are unknown. We explored the roles of Src family tyrosine kinases in cell migration and the spread of K-1735 murine melanoma cell lines with low or high metastatic potential. Corresponding to elevated cell motility and spreading ability, Fyn was selectively activated among Src family kinases, and the cell motility was blocked by an inhibitor of Src family kinases. Significant tyrosine phosphorylation of cortactin, stable complex formation between activated Fyn and cortactin, and co-localization of cortactin with Fyn at cell membranes were all observed only in cells with high metastatic potential. Both integrin-mediated Fyn activation and hyperphosphorylation of cortactin were observed 2-5 h after stimulation in highly metastatic cells, and they required de novo protein synthesis. We demonstrate that cortactin is a specific substrate and cooperative effector of Fyn in integrin-mediated signaling processes regulating metastatic potential.  相似文献   
145.
146.
Naive CD4(+) T cells differentiate into two types of helper T cells showing an interferon-gamma-predominant (Th1) or an interleukin-4-predominant (Th2) cytokine secretion profile after repeated antigenic stimulation. Their differentiation can be influenced by slight differences in the interaction between the T cell receptor (TCR) and its ligand at the time of primary activation. However, the primary response of freshly isolated naive CD4(+) T cells to altered TCR ligands is still unclear. Here, we investigated the primary response of splenic naive CD4(+) T cells derived from transgenic mice expressing TCR specific for residues 323-339 of ovalbumin (OVA323-339) bound to I-A(d) molecules. Naive CD4(+) T cells secreted either Th1- or Th2-type cytokines immediately after stimulation with OVA323-339 or its single amino acid-substituted analogs. Helper activity for antibody secretion by co-cultured resting B cells was also found in the primary response, accompanied by either low-level Th2-type cytokine secretion or no apparent cytokine secretion. Our results clearly indicate that dichotomy of the Th1/Th2 cytokine secretion profile can be elicited upon primary activation of naive CD4(+) T cells. We also demonstrate that the helper activity of naive CD4(+) T cells for antibody production does not correspond to the amounts of the relevant cytokines secreted.  相似文献   
147.
To determine the roles of nitric oxide (NO) and its metabolite, peroxynitrite (ONOO(-)), on osteoblastic activation, we investigated the effects of a NO donor [ethanamine, 2, 2'-(hydroxynitrosohydrazono)bis- (dNO)], an O(-2) donor (pyrogallol), and an ONOO(-) scavenger (urate) on alkaline phosphatase (ALPase) activity and osteocalcin gene expression, which are indexes of osteoblastic differentiation. dNO elevated ALPase activity in the osteogenic MC3T3-E1 cell line. The combination of dNO and pyrogallol reduced both ALPase activity and osteocalcin gene expression. Because both indexes were recovered by urate, ONOO(-), unlike NO itself, inhibited the osteoblastic differentiation. Furthermore, treatment with a combination of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) was found to yield ONOO(-) as well as NO and O(-2). The reductions in ALPase activity and osteocalcin gene expression were also restored by urate. We conclude that ONOO(-) produced by TNF-alpha and IL-1beta, but not NO per se, would overcome the stimulatory effect of NO on osteoblastic activity and inhibit osteoblastic differentiation.  相似文献   
148.
Since permanent cartilage has poor self-regenerative capacity, its regeneration from autologous human chondrocytes using a tissue engineering technique may greatly benefit the treatment of various skeletal disorders. However, the conventional autologous chondrocyte implantation is insufficient both in quantity and in quality due to two major limitations: dedifferentiation during a long term culture for multiplication and hypertrophic differentiation by stimulation for the redifferentiation. To overcome the limitations, this study attempted to determine the optimal combination in primary human chondrocyte cultures under a serum-free condition, from among 12 putative chondrocyte regulators. From the exhaustive 2(12) = 4,096 combinations, 256 were selected by fractional factorial design, and bone morphogenetic protein-2 and insulin (BI) were statistically determined to be the most effective combination causing redifferentiation of the dedifferentiated cells after repeated passaging. We further found that the addition of triiodothyronine (T3) prevented the BI-induced hypertrophic differentiation of redifferentiated chondrocytes via the suppression of Akt signaling. The implant formed by the human chondrocytes cultured in atelocollagen and poly(l-latic acid) scaffold under the BI + T3 stimulation consisted of sufficient hyaline cartilage with mechanical properties comparable with native cartilage after transplantation in nude mice, indicating that BI + T3 is the optimal combination to regenerate a clinically practical permanent cartilage from autologous chondrocytes.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号